IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v185y2022ics0040162522005674.html
   My bibliography  Save this article

Integrated explainable deep learning prediction of harmful algal blooms

Author

Listed:
  • Lee, Donghyun
  • Kim, Mingyu
  • Lee, Beomhui
  • Chae, Sangwon
  • Kwon, Sungjun
  • Kang, Sungwon

Abstract

Harmful algal blooms (HABs) can cause serious problems for aquatic ecosystems and human health, as well as massive social costs. Therefore, continuous monitoring and prevention are required. Water quality management is an important task to minimize such algae, and future occurrences can be accurately predicted through optimal water resource management. In this study, we developed a convolutional neural network model using eight water quality variables and four weather variables to predict the concentration of chlorophyll-a in four major Korean rivers. In addition, Deep SHAP was applied to aid in policy decision-making and identify the influence on variables affecting chlorophyll-a. This integrated prediction model showed a 38.01 % reduction in root mean square error and 36.16 % improvement in R-squared compared to the long short-term memory (LSTM) model. This demonstrated the effectiveness of the proposed integrated prediction approach. Furthermore, despite simultaneously predicting HABs at all monitoring stations and training 394 times faster than LSTM-based models, the proposed method exhibited a significant improvement in efficiency and elucidated variable influences that existing models failed to explain. The proposed integrated prediction model can predict HAB spread, identify variable influences to aid decision-makers, and effectively implement preemptive responses, thus reducing economic losses and preserving aquatic ecosystems.

Suggested Citation

  • Lee, Donghyun & Kim, Mingyu & Lee, Beomhui & Chae, Sangwon & Kwon, Sungjun & Kang, Sungwon, 2022. "Integrated explainable deep learning prediction of harmful algal blooms," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
  • Handle: RePEc:eee:tefoso:v:185:y:2022:i:c:s0040162522005674
    DOI: 10.1016/j.techfore.2022.122046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162522005674
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2022.122046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Tae-Young & Cho, Sung-Bae, 2019. "Predicting residential energy consumption using CNN-LSTM neural networks," Energy, Elsevier, vol. 182(C), pages 72-81.
    2. Bae, Soonyim & Seo, Dongil, 2018. "Analysis and modeling of algal blooms in the Nakdong River, Korea," Ecological Modelling, Elsevier, vol. 372(C), pages 53-63.
    3. Sangmok Lee & Donghyun Lee, 2018. "Improved Prediction of Harmful Algal Blooms in Four Major South Korea’s Rivers Using Deep Learning Models," IJERPH, MDPI, vol. 15(7), pages 1-15, June.
    4. Zou, Yingchao & Yu, Lean & Tso, Geoffrey K.F. & He, Kaijian, 2020. "Risk forecasting in the crude oil market: A multiscale Convolutional Neural Network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    5. Andr'es Garc'ia-Medina & Toan Luu Duc Huynh3, 2021. "What drives bitcoin? An approach from continuous local transfer entropy and deep learning classification models," Papers 2109.01214, arXiv.org.
    6. Lixin Li & Travis Losser & Charles Yorke & Reinhard Piltner, 2014. "Fast Inverse Distance Weighting-Based Spatiotemporal Interpolation: A Web-Based Application of Interpolating Daily Fine Particulate Matter PM 2.5 in the Contiguous U.S. Using Parallel Programming and ," IJERPH, MDPI, vol. 11(9), pages 1-41, September.
    7. Jungbacker, B. & Koopman, S.J. & van der Wel, M., 2011. "Maximum likelihood estimation for dynamic factor models with missing data," Journal of Economic Dynamics and Control, Elsevier, vol. 35(8), pages 1358-1368, August.
    8. Sangwon Chae & Sungjun Kwon & Donghyun Lee, 2018. "Predicting Infectious Disease Using Deep Learning and Big Data," IJERPH, MDPI, vol. 15(8), pages 1-20, July.
    9. Taewook Kim & Ha Young Kim, 2019. "Forecasting stock prices with a feature fusion LSTM-CNN model using different representations of the same data," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-23, February.
    10. Davide Castelvecchi, 2016. "Can we open the black box of AI?," Nature, Nature, vol. 538(7623), pages 20-23, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Zhang & Zhen Guo & Yujie Meng & Songwang Wang & Shaoqiong Li & Ran Niu & Yu Wang & Qing Guo & Yonghong Li, 2021. "Comparison of ARIMA and LSTM in Forecasting the Incidence of HFMD Combined and Uncombined with Exogenous Meteorological Variables in Ningbo, China," IJERPH, MDPI, vol. 18(11), pages 1-14, June.
    2. Fatin Nadiah Yussof & Normah Maan & Mohd Nadzri Md Reba, 2021. "LSTM Networks to Improve the Prediction of Harmful Algal Blooms in the West Coast of Sabah," IJERPH, MDPI, vol. 18(14), pages 1-14, July.
    3. Libero Monteforte & Valentina Raponi, 2019. "Short‐term forecasts of economic activity: Are fortnightly factors useful?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(3), pages 207-221, April.
    4. Zirogiannis, Nikolaos & Tripodis, Yorghos, 2013. "A Generalized Dynamic Factor Model for Panel Data: Estimation with a Two-Cycle Conditional Expectation-Maximization Algorithm," Working Paper Series 142752, University of Massachusetts, Amherst, Department of Resource Economics.
    5. Cahan, Ercument & Bai, Jushan & Ng, Serena, 2023. "Factor-based imputation of missing values and covariances in panel data of large dimensions," Journal of Econometrics, Elsevier, vol. 233(1), pages 113-131.
    6. Laura E. Jackson & M. Ayhan Kose & Christopher Otrok & Michael T. Owyang, 2016. "Specification and Estimation of Bayesian Dynamic Factor Models: A Monte Carlo Analysis with an Application to Global House Price Comovement," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 361-400, Emerald Group Publishing Limited.
    7. Kim, Jaeyoung & Seo, Dongil & Jones, John R., 2022. "Harmful algal bloom dynamics in a tidal river influenced by hydraulic control structures," Ecological Modelling, Elsevier, vol. 467(C).
    8. Chao Deng & Liang Ma & Taishan Zeng, 2021. "Crude Oil Price Forecast Based on Deep Transfer Learning: Shanghai Crude Oil as an Example," Sustainability, MDPI, vol. 13(24), pages 1-13, December.
    9. Abubakar Ahmad Musa & Adamu Hussaini & Weixian Liao & Fan Liang & Wei Yu, 2023. "Deep Neural Networks for Spatial-Temporal Cyber-Physical Systems: A Survey," Future Internet, MDPI, vol. 15(6), pages 1-24, May.
    10. Lan, Puzhe & Han, Dong & Xu, Xiaoyuan & Yan, Zheng & Ren, Xijun & Xia, Shiwei, 2022. "Data-driven state estimation of integrated electric-gas energy system," Energy, Elsevier, vol. 252(C).
    11. Ijaz Ul Haq & Amin Ullah & Samee Ullah Khan & Noman Khan & Mi Young Lee & Seungmin Rho & Sung Wook Baik, 2021. "Sequential Learning-Based Energy Consumption Prediction Model for Residential and Commercial Sectors," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
    12. Lu, Yakai & Tian, Zhe & Zhou, Ruoyu & Liu, Wenjing, 2021. "A general transfer learning-based framework for thermal load prediction in regional energy system," Energy, Elsevier, vol. 217(C).
    13. Lixin Li & Xiaolu Zhou & Marc Kalo & Reinhard Piltner, 2016. "Spatiotemporal Interpolation Methods for the Application of Estimating Population Exposure to Fine Particulate Matter in the Contiguous U.S. and a Real-Time Web Application," IJERPH, MDPI, vol. 13(8), pages 1-20, July.
    14. Alireza Rezazadeh & Yasamin Jafarian & Ali Kord, 2022. "Explainable Ensemble Machine Learning for Breast Cancer Diagnosis Based on Ultrasound Image Texture Features," Forecasting, MDPI, vol. 4(1), pages 1-13, February.
    15. Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
    16. Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    17. Bae, Sunim & Seo, Dongil, 2021. "Changes in algal bloom dynamics in a regulated large river in response to eutrophic status," Ecological Modelling, Elsevier, vol. 454(C).
    18. Ruoxuan Xiong & Markus Pelger, 2019. "Large Dimensional Latent Factor Modeling with Missing Observations and Applications to Causal Inference," Papers 1910.08273, arXiv.org, revised Jan 2022.
    19. Namrye Son, 2021. "Comparison of the Deep Learning Performance for Short-Term Power Load Forecasting," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
    20. Wu, Han & Liang, Yan & Heng, Jiani, 2023. "Pulse-diagnosis-inspired multi-feature extraction deep network for short-term electricity load forecasting," Applied Energy, Elsevier, vol. 339(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:185:y:2022:i:c:s0040162522005674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.