IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v129y2018icp297-307.html
   My bibliography  Save this article

Managing social networks: Applying the percolation theory methodology to understand individuals' attitudes and moods

Author

Listed:
  • Zhukov, Dmitry
  • Khvatova, Tatiana
  • Lesko, Sergey
  • Zaltcman, Anastasia

Abstract

A disruptive technology is an unexpected technological breakthrough which destroys existing markets, shakes up an industry and induces organisations to radically change their business models. Digital technologies, and in particular social media are, without a doubt, the most disruptive innovations to have emerged over the past few decades. Social media virtually rule society: people's moods and opinions, spreading openly and rapidly within networks, can affect almost any business or brand in a positive or negative way.

Suggested Citation

  • Zhukov, Dmitry & Khvatova, Tatiana & Lesko, Sergey & Zaltcman, Anastasia, 2018. "Managing social networks: Applying the percolation theory methodology to understand individuals' attitudes and moods," Technological Forecasting and Social Change, Elsevier, vol. 129(C), pages 297-307.
  • Handle: RePEc:eee:tefoso:v:129:y:2018:i:c:p:297-307
    DOI: 10.1016/j.techfore.2017.09.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162517314683
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2017.09.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Masi, G. & Iori, G. & Caldarelli, G., 2006. "A fitness model for the Italian interbank money market," Working Papers 06/08, Department of Economics, City University London.
    2. Ueno, Hiromichi & Mizuno, Takayuki & Takayasu, Misako, 2007. "Analysis of Japanese banks’ historical tree diagram," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(1), pages 164-168.
    3. Hirokazu Kawamoto & Hideki Takayasu & Henrik Jeldtoft Jensen & Misako Takayasu, 2015. "Precise Calculation of a Bond Percolation Transition and Survival Rates of Nodes in a Complex Network," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-16, April.
    4. Chen, Yiping & Paul, Gerald & Cohen, Reuven & Havlin, Shlomo & Borgatti, Stephen P. & Liljeros, Fredrik & Eugene Stanley, H., 2007. "Percolation theory and fragmentation measures in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(1), pages 11-19.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hwang, Jeong Seop & Rho, Jae Jeung & Hwang, Yoon Min, 2023. "Influence of cognitive and social change factors on E-vehicle switching intention: Evidence from Korea," Technology in Society, Elsevier, vol. 74(C).
    2. Guo, Jingni & Xu, Junxiang & He, Zhenggang & Liao, Wei, 2021. "Research on risk propagation method of multimodal transport network under uncertainty," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    3. Zhukov, Dmitry & Khvatova, Tatiana & Millar, Carla & Andrianova, Elena, 2022. "Beyond big data – new techniques for forecasting elections using stochastic models with self-organisation and memory," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    4. Zhukov, Dmitry & Khvatova, Tatiana & Millar, Carla & Zaltcman, Anastasia, 2020. "Modelling the stochastic dynamics of transitions between states in social systems incorporating self-organization and memory," Technological Forecasting and Social Change, Elsevier, vol. 158(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido Caldarelli & Matthieu Cristelli & Andrea Gabrielli & Luciano Pietronero & Antonio Scala & Andrea Tacchella, 2012. "A Network Analysis of Countries’ Export Flows: Firm Grounds for the Building Blocks of the Economy," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-11, October.
    2. Kobayashi, Teruyoshi & Takaguchi, Taro, 2018. "Identifying relationship lending in the interbank market: A network approach," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 20-36.
    3. Yoshiharu Maeno & Kenji Nishiguchi & Satoshi Morinaga & Hirokazu Matsushima, 2014. "Impact of credit default swaps on financial contagion," Papers 1411.1356, arXiv.org.
    4. Fathin Faizah Said, 2017. "Global Banking on the Financial Network Modelling: Sectorial Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 49(2), pages 227-253, February.
    5. Hazan, Aurélien, 2017. "Volume of the steady-state space of financial flows in a monetary stock-flow-consistent model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 589-602.
    6. Marco Bardoscia & Fabio Caccioli & Juan Ignacio Perotti & Gianna Vivaldo & Guido Caldarelli, 2016. "Distress Propagation in Complex Networks: The Case of Non-Linear DebtRank," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-12, October.
    7. Zappa, Paola & Vu, Duy Q., 2021. "Markets as networks evolving step by step: Relational Event Models for the interbank market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    8. Liberati, Caterina & Marzo, Massimiliano & Zagaglia, Paolo & Zappa, Paola, 2012. "Structural distortions in the Euro interbank market: the role of 'key players' during the recent market turmoil," MPRA Paper 40223, University Library of Munich, Germany.
    9. Patrick Mugenzi & Thomas Kigabo Rusuhuzwa & Annie Uwimana, 2021. "Finding the Network Structure of Rwandan Interbank Market," International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 12(3), pages 435-445, May.
    10. Elosegui, Pedro & Forte, Federico D. & Montes-Rojas, Gabriel, 2022. "Network structure and fragmentation of the Argentinean interbank markets," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 3(3).
    11. Lux, Thomas, 2016. "Network effects and systemic risk in the banking sector," FinMaP-Working Papers 62, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    12. Thomas Lux, 2020. "On the distribution of links in financial networks: structural heterogeneity and functional form," Empirical Economics, Springer, vol. 58(3), pages 1019-1053, March.
    13. Tabak, Benjamin M. & Takami, Marcelo & Rocha, Jadson M.C. & Cajueiro, Daniel O. & Souza, Sergio R.S., 2014. "Directed clustering coefficient as a measure of systemic risk in complex banking networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 211-216.
    14. Song, Jae Wook & Ko, Bonggyun & Cho, Poongjin & Chang, Woojin, 2016. "Time-varying causal network of the Korean financial system based on firm-specific risk premiums," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 287-302.
    15. Drago, Carlo & Ricciuti, Roberto, 2017. "Communities detection as a tool to assess a reform of the Italian interlocking directorship network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 91-104.
    16. Caterina Liberati & Massimiliano Marzo & Paolo Zagaglia & Paola Zappa, 2015. "Drivers of demand and supply in the Euro interbank market: the role of “Key Players” during the recent turmoil," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 29(3), pages 207-250, August.
    17. Marco Bardoscia & Stefano Battiston & Fabio Caccioli & Guido Caldarelli, 2015. "DebtRank: A Microscopic Foundation for Shock Propagation," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-13, June.
    18. Sam Langfield & Kimmo Soramäki, 2016. "Interbank Exposure Networks," Computational Economics, Springer;Society for Computational Economics, vol. 47(1), pages 3-17, January.
    19. He, Fang & Chen, Xi, 2016. "Credit networks and systemic risk of Chinese local financing platforms: Too central or too big to fail?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 158-170.
    20. Marnix Van Soom & Milan Van Den Heuvel & Jan Ryckebusch & Koen Schoors, 2019. "Loan Maturity Aggregation In Interbank Lending Networks Obscures Mesoscale Structure And Economic Functions," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 19/952, Ghent University, Faculty of Economics and Business Administration.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:129:y:2018:i:c:p:297-307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.