IDEAS home Printed from https://ideas.repec.org/a/eee/streco/v53y2020icp370-376.html
   My bibliography  Save this article

Growth and ideas in a perfectly competitive world

Author

Listed:
  • Boitier, Vincent

Abstract

Are ideas, increasing returns to scale, and perfect competition compatible? To address this fundamental question, I build a purposefully simple model of growth and ideas with two salient features: (i) firms raise capital from shareholders, and (ii) the production function shows decreasing returns to scale in the stock of ideas and in labor. I obtain two noticeable results from this model. First, contrary to conventional wisdom, I show that ideas, increasing returns to scale, and a competitive equilibrium are tenable. Second, I underline that the model has a balanced growth equilibrium similar to the one founded in the semi-endogenous models.

Suggested Citation

  • Boitier, Vincent, 2020. "Growth and ideas in a perfectly competitive world," Structural Change and Economic Dynamics, Elsevier, vol. 53(C), pages 370-376.
  • Handle: RePEc:eee:streco:v:53:y:2020:i:c:p:370-376
    DOI: 10.1016/j.strueco.2019.06.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0954349X18302376
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.strueco.2019.06.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boldrin, Michele & Levine, David K., 2008. "Perfectly competitive innovation," Journal of Monetary Economics, Elsevier, vol. 55(3), pages 435-453, April.
    2. Jones, Charles I., 2005. "Growth and Ideas," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 16, pages 1063-1111, Elsevier.
    3. Brown, Donald J., 1991. "Equilibrium analysis with non-convex technologies," Handbook of Mathematical Economics, in: W. Hildenbrand & H. Sonnenschein (ed.), Handbook of Mathematical Economics, edition 1, volume 4, chapter 36, pages 1963-1995, Elsevier.
    4. Gene M. Grossman & Elhanan Helpman, 1991. "Quality Ladders in the Theory of Growth," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(1), pages 43-61.
    5. Aghion, Philippe & Howitt, Peter, 1992. "A Model of Growth through Creative Destruction," Econometrica, Econometric Society, vol. 60(2), pages 323-351, March.
    6. Samuel S. Kortum, 1997. "Research, Patenting, and Technological Change," Econometrica, Econometric Society, vol. 65(6), pages 1389-1420, November.
    7. Ludwig Straub & Iván Werning, 2020. "Positive Long-Run Capital Taxation: Chamley-Judd Revisited," American Economic Review, American Economic Association, vol. 110(1), pages 86-119, January.
    8. Homma, Masaaki, 1981. "A dynamic analysis of the differential incidence of capital and labour taxes in a two-class economy," Journal of Public Economics, Elsevier, vol. 15(3), pages 363-378, June.
    9. Cornet, Bernard, 1988. "General equilibrium theory and increasing returns : Presentation," Journal of Mathematical Economics, Elsevier, vol. 17(2-3), pages 103-118, April.
    10. Charles I. Jones, 1999. "Growth: With or Without Scale Effects?," American Economic Review, American Economic Association, vol. 89(2), pages 139-144, May.
    11. Paul M. Romer, 2015. "Mathiness in the Theory of Economic Growth," American Economic Review, American Economic Association, vol. 105(5), pages 89-93, May.
    12. Luigi L. Pasinetti, 1962. "Rate of Profit and Income Distribution in Relation to the Rate of Economic Growth," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 29(4), pages 267-279.
    13. Francisco J. Buera & Benjamin Moll, 2015. "Aggregate Implications of a Credit Crunch: The Importance of Heterogeneity," American Economic Journal: Macroeconomics, American Economic Association, vol. 7(3), pages 1-42, July.
    14. Judd, Kenneth L., 1985. "Redistributive taxation in a simple perfect foresight model," Journal of Public Economics, Elsevier, vol. 28(1), pages 59-83, October.
    15. Lansing, Kevin J., 1999. "Optimal redistributive capital taxation in a neoclassical growth model," Journal of Public Economics, Elsevier, vol. 73(3), pages 423-453, September.
    16. Romer, Paul M, 1990. "Endogenous Technological Change," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 71-102, October.
    17. Segerstrom, Paul S, 1998. "Endogenous Growth without Scale Effects," American Economic Review, American Economic Association, vol. 88(5), pages 1290-1310, December.
    18. Jones, Charles I, 1995. "R&D-Based Models of Economic Growth," Journal of Political Economy, University of Chicago Press, vol. 103(4), pages 759-784, August.
    19. F. A. Lutz, 1961. "The Theory of Capital," International Economic Association Series, Palgrave Macmillan, number 978-1-349-08452-4 edited by D. C. Hague, December.
    20. Nicholas Kaldor, 1961. "Capital Accumulation and Economic Growth," International Economic Association Series, in: D. C. Hague (ed.), The Theory of Capital, chapter 0, pages 177-222, Palgrave Macmillan.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gray, Elie & Grimaud, André, 2014. "The Lindahl equilibrium in Schumpeterian growth models: Knowledge diffusion, social value of innovations and optimal R&D incentives," TSE Working Papers 14-469, Toulouse School of Economics (TSE).
    2. Gray, Elie & Grimaud, André, 2014. "The Lindahl equilibrium in Schumpeterian growth models: Knowledge diffusion, social value of innovations and optimal R&D incentives," IDEI Working Papers 821, Institut d'Économie Industrielle (IDEI), Toulouse.
    3. Minniti, Antonio & Venturini, Francesco, 2017. "The long-run growth effects of R&D policy," Research Policy, Elsevier, vol. 46(1), pages 316-326.
    4. Charles I. Jones & Paul M. Romer, 2010. "The New Kaldor Facts: Ideas, Institutions, Population, and Human Capital," American Economic Journal: Macroeconomics, American Economic Association, vol. 2(1), pages 224-245, January.
    5. Elie Gray & André Grimaud, 2014. "The Lindahl Equilibrium in Schumpeterian Growth Models: Knowledge Diffusion, Social Value of Innovations and Optimal R&D Incentives," CESifo Working Paper Series 4678, CESifo.
    6. Dean Scrimgeour, 2015. "Dynamic Scoring in a Romer‐Style Economy," Southern Economic Journal, John Wiley & Sons, vol. 81(3), pages 697-723, January.
    7. Adriana Di Liberto, 2007. "Convergence and Divergence in Neoclassical Growth Models with Human Capital," Economia politica, Società editrice il Mulino, issue 2, pages 289-322.
    8. Martin Zagler & Georg Dürnecker, 2003. "Fiscal Policy and Economic Growth," Journal of Economic Surveys, Wiley Blackwell, vol. 17(3), pages 397-418, July.
    9. Jones, C.I., 2016. "The Facts of Economic Growth," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 3-69, Elsevier.
    10. Callaghan, Christian William, 2021. "Growth contributions of technological change: Is there a burden of knowledge effect?," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    11. Harashima, Taiji, 2010. "An Asymptotically Non-Scale Endogenous Growth Model," MPRA Paper 26025, University Library of Munich, Germany.
    12. Ghiglino, Christian & Tabasso, Nicole, 2016. "Risk aversion in a model of endogenous growth," Journal of Mathematical Economics, Elsevier, vol. 64(C), pages 30-40.
    13. Gerhard Sorger, 2006. "Quality-improving horizontal innovations," Vienna Economics Papers 0609, University of Vienna, Department of Economics.
    14. Thomas I. Renström & Luca Spataro, 2015. "Population Growth and Human Capital: A Welfarist Approach," Manchester School, University of Manchester, vol. 83, pages 110-141, December.
    15. Roberto Veneziani & Luca Zamparelli & Daniele Tavani & Luca Zamparelli, 2017. "Endogenous Technical Change In Alternative Theories Of Growth And Distribution," Journal of Economic Surveys, Wiley Blackwell, vol. 31(5), pages 1272-1303, December.
    16. Cozzi, Guido, 2023. "Semi-endogenous or fully endogenous growth? A unified theory," Journal of Economic Theory, Elsevier, vol. 213(C).
    17. Steven Bond-Smith, 2021. "The unintended consequences of increasing returns to scale in geographical economics [Investing for prosperity: skills, infrastructure and innovation]," Journal of Economic Geography, Oxford University Press, vol. 21(5), pages 653-681.
    18. Klaus Prettner, 2013. "Population aging and endogenous economic growth," Journal of Population Economics, Springer;European Society for Population Economics, vol. 26(2), pages 811-834, April.
    19. Angus Chu & Guido Cozzi & Chih-Hsing Liao, 2013. "Endogenous fertility and human capital in a Schumpeterian growth model," Journal of Population Economics, Springer;European Society for Population Economics, vol. 26(1), pages 181-202, January.
    20. Sener, Fuat, 2008. "R&D policies, endogenous growth and scale effects," Journal of Economic Dynamics and Control, Elsevier, vol. 32(12), pages 3895-3916, December.

    More about this item

    Keywords

    Growth theory; Ideas; Increasing return to scale; Competitive equilibrium;
    All these keywords.

    JEL classification:

    • E13 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Neoclassical
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:streco:v:53:y:2020:i:c:p:370-376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/525148 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.