IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v78y2008i4p402-404.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Generalized least squares transformation and estimation with autoregressive error

Author

Listed:
  • Vougas, Dimitrios V.

Abstract

Approximations of the usual GLS transformation matrices are proposed for estimation with AR error that remove boundary discontinuities. The proposed method avoids constrained optimization or rules of thumb that unnecessarily enforce estimated parameters to be in the interior.

Suggested Citation

  • Vougas, Dimitrios V., 2008. "Generalized least squares transformation and estimation with autoregressive error," Statistics & Probability Letters, Elsevier, vol. 78(4), pages 402-404, March.
  • Handle: RePEc:eee:stapro:v:78:y:2008:i:4:p:402-404
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(07)00254-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dufour, Jean-Marie, 1990. "Exact Tests and Confidence Sets in Linear Regressions with Autocorrelated Errors," Econometrica, Econometric Society, vol. 58(2), pages 475-494, March.
    2. Dufour, Jean-Marie & King, Maxwell L., 1991. "Optimal invariant tests for the autocorrelation coefficient in linear regressions with stationary or nonstationary AR(1) errors," Journal of Econometrics, Elsevier, vol. 47(1), pages 115-143, January.
    3. Beach, Charles M & MacKinnon, James G, 1978. "A Maximum Likelihood Procedure for Regression with Autocorrelated Errors," Econometrica, Econometric Society, vol. 46(1), pages 51-58, January.
    4. Beach, Charles M. & MacKinnon, James G., 1978. "Full maximum likelihood estimation of second- order autoregressive error models," Journal of Econometrics, Elsevier, vol. 7(2), pages 187-198, June.
    5. Donald W. K. Andrews, 1999. "Estimation When a Parameter Is on a Boundary," Econometrica, Econometric Society, vol. 67(6), pages 1341-1384, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dufour, Jean-Marie & Farhat, Abdeljelil & Hallin, Marc, 2006. "Distribution-free bounds for serial correlation coefficients in heteroskedastic symmetric time series," Journal of Econometrics, Elsevier, vol. 130(1), pages 123-142, January.
    2. Jean-Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 36(4), pages 767-808, November.
    3. James G. MacKinnon, 1978. "On the Role of Jacobian Terms in Maximum Likelihood Estimation," Working Paper 304, Economics Department, Queen's University.
    4. Kiviet, Jan F. & Dufour, Jean-Marie, 1997. "Exact tests in single equation autoregressive distributed lag models," Journal of Econometrics, Elsevier, vol. 80(2), pages 325-353, October.
    5. Jean‐Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 36(4), pages 767-808, November.
    6. Dufour, Jean-Marie & Neifar, Malika, 2004. "Méthodes d’inférence exactes pour un modèle de régression avec erreurs AR(2) gaussiennes," L'Actualité Economique, Société Canadienne de Science Economique, vol. 80(4), pages 593-618, Décembre.
    7. Vougas, Dimitrios V., 2007. "GLS detrending and unit root testing," Economics Letters, Elsevier, vol. 97(3), pages 222-229, December.
    8. Gkritza, Konstantina & Karlaftis, Matthew G. & Mannering, Fred L., 2011. "Estimating multimodal transit ridership with a varying fare structure," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(2), pages 148-160, February.
    9. Dufour, Jean-Marie & Kiviet, Jan F., 1996. "Exact tests for structural change in first-order dynamic models," Journal of Econometrics, Elsevier, vol. 70(1), pages 39-68, January.
    10. Jarle Aarstad & Olav Andreas Kvitastein & Stig-Erik Jakobsen, 2019. "What Drives Enterprise Product Innovation? Assessing How Regional, National, And International Inter-Firm Collaboration Complement Or Substitute For R&D Investments," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 23(05), pages 1-25, June.
    11. Xiaohong Chen & Andres Santos, 2018. "Overidentification in Regular Models," Econometrica, Econometric Society, vol. 86(5), pages 1771-1817, September.
    12. Lombardi, Marco J. & Calzolari, Giorgio, 2009. "Indirect estimation of [alpha]-stable stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2298-2308, April.
    13. Young-Joo Kim & Myung Hwan Seo, 2017. "Is There a Jump in the Transition?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 241-249, April.
    14. Seung C. Ahn & Gareth M. Thomas, 2023. "Likelihood-based inference for dynamic panel data models," Empirical Economics, Springer, vol. 64(6), pages 2859-2909, June.
    15. Pierre Perron & Gabriel Rodríguez, "undated". "Residuals-based Tests for Cointegration with GLS Detrended Data," Boston University - Department of Economics - Working Papers Series wp2015-017, Boston University - Department of Economics, revised 19 Oct 2015.
    16. Edward L. Glaeser & Joseph Gyourko, 2006. "Housing Dynamics," NBER Working Papers 12787, National Bureau of Economic Research, Inc.
    17. Dufour, Jean-Marie, 2006. "Monte Carlo tests with nuisance parameters: A general approach to finite-sample inference and nonstandard asymptotics," Journal of Econometrics, Elsevier, vol. 133(2), pages 443-477, August.
    18. Chang, Yoosoon, 2004. "Bootstrap unit root tests in panels with cross-sectional dependency," Journal of Econometrics, Elsevier, vol. 120(2), pages 263-293, June.
    19. Dina Naser Tahat & Mohammed Habes & Khalaf Tahat & Saadia Anwar Pasha & Razaz Waheeb Attar & Waleed Mugahed Al-Rahmi & Fahad Alblehai, 2023. "Technology Enhanced Learning in Undergraduate Level Education: A Case Study of Students of Mass Communication," Sustainability, MDPI, vol. 15(21), pages 1-17, October.
    20. Conybeare, John A C & Murdoch, James C & Sandler, Todd, 1994. "Alternative Collective-Goods Models of Military Alliances: Theory and Empirics," Economic Inquiry, Western Economic Association International, vol. 32(4), pages 525-542, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:78:y:2008:i:4:p:402-404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.