IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v130y2020i5p2918-2953.html

Causal optimal transport and its links to enlargement of filtrations and continuous-time stochastic optimization

Author

Listed:
  • Acciaio, B.
  • Backhoff-Veraguas, J.
  • Zalashko, A.

Abstract

The martingale part in the semimartingale decomposition of a Brownian motion with respect to an enlargement of its filtration, is an anticipative mapping of the given Brownian motion. In analogy to optimal transport theory, we define causal transport plans in the context of enlargement of filtrations, as the Kantorovich counterparts of the aforementioned non-adapted mappings. We provide a necessary and sufficient condition for a Brownian motion to remain a semimartingale in an enlarged filtration, in terms of certain minimization problems over sets of causal transport plans. The latter are also used in order to give robust transport-based estimates for the value of having additional information, as well as model sensitivity with respect to the reference measure, for the classical stochastic optimization problems of utility maximization and optimal stopping.

Suggested Citation

  • Acciaio, B. & Backhoff-Veraguas, J. & Zalashko, A., 2020. "Causal optimal transport and its links to enlargement of filtrations and continuous-time stochastic optimization," Stochastic Processes and their Applications, Elsevier, vol. 130(5), pages 2918-2953.
  • Handle: RePEc:eee:spapps:v:130:y:2020:i:5:p:2918-2953
    DOI: 10.1016/j.spa.2019.08.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414918303995
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2019.08.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Stefan Ankirchner & Steffen Dereich & Peter Imkeller, 2005. "The Shannon information of filtrations and the additional logarithmic utility of insiders," Papers math/0503013, arXiv.org, revised May 2006.
    2. Amendinger, Jürgen & Imkeller, Peter & Schweizer, Martin, 1998. "Additional logarithmic utility of an insider," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 263-286, July.
    3. Mathias Beiglbock & Pierre Henry-Labord`ere & Friedrich Penkner, 2011. "Model-independent Bounds for Option Prices: A Mass Transport Approach," Papers 1106.5929, arXiv.org, revised Feb 2013.
    4. Younes Kchia & Philip Protter, 2015. "Progressive Filtration Expansions Via A Process, With Applications To Insider Trading," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1-48.
    5. Florens, Jean-Pierre & Fougere, Denis, 1996. "Noncausality in Continuous Time," Econometrica, Econometric Society, vol. 64(5), pages 1195-1212, September.
    6. Amendinger, Jürgen & Imkeller, Peter & Schweizer, Martin, 1998. "Additional logarithmic utility of an insider," SFB 373 Discussion Papers 1998,25, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    7. A. Galichon & P. Henry-Labord`ere & N. Touzi, 2014. "A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options," Papers 1401.3921, arXiv.org.
    8. Mathias Beiglböck & Pierre Henry-Labordère & Friedrich Penkner, 2013. "Model-independent bounds for option prices—a mass transport approach," Finance and Stochastics, Springer, vol. 17(3), pages 477-501, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julio Backhoff-Veraguas & Daniel Bartl & Mathias Beiglböck & Manu Eder, 2020. "Adapted Wasserstein distances and stability in mathematical finance," Finance and Stochastics, Springer, vol. 24(3), pages 601-632, July.
    2. Bingyan Han, 2022. "Distributionally robust risk evaluation with a causality constraint and structural information," Papers 2203.10571, arXiv.org, revised Jun 2025.
    3. Beatrice Acciaio & Berenice Anne Neumann, 2025. "Characterization of transport optimizers via graphs and applications to Stackelberg–Cournot–Nash equilibria," Mathematics and Financial Economics, Springer, volume 19, number 3, December.
    4. Reda Chhaibi & Ibrahim Ekren & Eunjung Noh & Lu Vy, 2022. "A unified approach to informed trading via Monge-Kantorovich duality," Papers 2210.17384, arXiv.org.
    5. Mathias Beiglbock & Gudmund Pammer & Lorenz Riess, 2024. "Change of numeraire for weak martingale transport," Papers 2406.07523, arXiv.org.
    6. Daniel Krv{s}ek & Gudmund Pammer, 2024. "General duality and dual attainment for adapted transport," Papers 2401.11958, arXiv.org, revised Nov 2024.
    7. Backhoff-Veraguas, Julio & Källblad, Sigrid & Robinson, Benjamin A., 2025. "Adapted Wasserstein distance between the laws of SDEs," Stochastic Processes and their Applications, Elsevier, vol. 189(C).
    8. Julio Backhoff-Veraguas & Xin Zhang, 2023. "Dynamic Cournot-Nash equilibrium: the non-potential case," Mathematics and Financial Economics, Springer, volume 17, number 1, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Acciaio, B. & Backhoff-Veraguas, J. & Zalashko, A., 2020. "Causal optimal transport and its links to enlargement of filtrations and continuous-time stochastic optimization," LSE Research Online Documents on Economics 101864, London School of Economics and Political Science, LSE Library.
    2. Y. Dolinsky & H. M. Soner, 2014. "Martingale optimal transport in the Skorokhod space," Papers 1404.1516, arXiv.org, revised Feb 2015.
    3. Marcel Nutz & Johannes Wiesel & Long Zhao, 2022. "Limits of Semistatic Trading Strategies," Papers 2204.12251, arXiv.org.
    4. Nutz, Marcel & Stebegg, Florian & Tan, Xiaowei, 2020. "Multiperiod martingale transport," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1568-1615.
    5. D'Auria, Bernardo & Salmerón Garrido, José Antonio, 2019. "Insider information and its relation with the arbitrage condition and the utility maximization problem," DES - Working Papers. Statistics and Econometrics. WS 28805, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Julio Backhoff-Veraguas & Gudmund Pammer, 2019. "Stability of martingale optimal transport and weak optimal transport," Papers 1904.04171, arXiv.org, revised Dec 2020.
    7. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2023. "Model-Free Bounds for Multi-Asset Options Using Option-Implied Information and Their Exact Computation," Management Science, INFORMS, vol. 69(4), pages 2051-2068, April.
    8. Scott Robertson, 2025. "Equilibrium with heterogeneous information flows," Finance and Stochastics, Springer, vol. 29(3), pages 791-846, July.
    9. Tongseok Lim, 2023. "Replication of financial derivatives under extreme market models given marginals," Papers 2307.00807, arXiv.org.
    10. Daniel Bartl & Michael Kupper & David J. Prömel & Ludovic Tangpi, 2019. "Duality for pathwise superhedging in continuous time," Finance and Stochastics, Springer, vol. 23(3), pages 697-728, July.
    11. Alessandro Doldi & Marco Frittelli, 2023. "Entropy martingale optimal transport and nonlinear pricing–hedging duality," Finance and Stochastics, Springer, vol. 27(2), pages 255-304, April.
    12. Zhengqing Zhou & Jose Blanchet & Peter W. Glynn, 2021. "Distributionally Robust Martingale Optimal Transport," Papers 2106.07191, arXiv.org, revised Nov 2021.
    13. Peter Imkeller & Nicolas Perkowski, 2015. "The existence of dominating local martingale measures," Finance and Stochastics, Springer, vol. 19(4), pages 685-717, October.
    14. Gaoyue Guo & Xiaolu Tan & Nizar Touzi, 2015. "Optimal Skorokhod embedding under finitely-many marginal constraints," Papers 1506.04063, arXiv.org, revised Aug 2016.
    15. Dolinsky, Yan & Zouari, Jonathan, 2021. "The value of insider information for super-replication with quadratic transaction costs," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 394-416.
    16. Julien Claisse & Gaoyue Guo & Pierre Henry-Labordère, 2018. "Some Results on Skorokhod Embedding and Robust Hedging with Local Time," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 569-597, November.
    17. Pierre Henry-Labordère & Nizar Touzi, 2016. "An explicit martingale version of the one-dimensional Brenier theorem," Finance and Stochastics, Springer, vol. 20(3), pages 635-668, July.
    18. Jan Obłój & Johannes Wiesel, 2021. "Distributionally robust portfolio maximization and marginal utility pricing in one period financial markets," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1454-1493, October.
    19. Bernardo D’Auria & José A. Salmeron, 2025. "Optimal portfolios with anticipating information on the stochastic interest rate," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 48(1), pages 301-328, June.
    20. Pavel V. Gapeev & Libo Li, 2025. "Perpetual American Standard and Lookback Options in Insider Models with Progressively Enlarged Filtrations," Papers 2507.03470, arXiv.org.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:130:y:2020:i:5:p:2918-2953. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.