IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.03470.html
   My bibliography  Save this paper

Perpetual American Standard and Lookback Options in Insider Models with Progressively Enlarged Filtrations

Author

Listed:
  • Pavel V. Gapeev
  • Libo Li

Abstract

We derive closed-form solutions to the optimal stopping problems related to the pricing of perpetual American standard and lookback put and call options in the extensions of the Black-Merton-Scholes model with progressively enlarged filtrations. More specifically, the information available to the insider is modelled by Brownian filtrations progressively enlarged with the times of either the global maximum or minimum of the underlying risky asset price over the infinite time interval, which is not a stopping time in the filtration generated by the underlying risky asset. We show that the optimal exercise times are the first times at which the asset price process reaches either lower or upper stochastic boundaries depending on the current values of its running maximum or minimum given the occurrence of times of either the global maximum or minimum, respectively. The proof is based on the reduction of the original problems into the necessarily three-dimensional optimal stopping problems and the equivalent free-boundary problems. We apply either the normal-reflection or the normal-entrance conditions as well as the smooth-fit conditions for the value functions to characterise the candidate boundaries as either the maximal or minimal solutions to the associated first-order nonlinear ordinary differential equations and the transcendental arithmetic equations, respectively.

Suggested Citation

  • Pavel V. Gapeev & Libo Li, 2025. "Perpetual American Standard and Lookback Options in Insider Models with Progressively Enlarged Filtrations," Papers 2507.03470, arXiv.org.
  • Handle: RePEc:arx:papers:2507.03470
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.03470
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.03470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.