IDEAS home Printed from https://ideas.repec.org/b/spr/mathfi/v19y2025i1d10.1007_s11579-024-00375-x.html
   My bibliography  Save this book

Characterization of transport optimizers via graphs and applications to Stackelberg–Cournot–Nash equilibria

Author

Listed:
  • Beatrice Acciaio

    (ETH Zurich)

  • Berenice Anne Neumann

    (Trier University)

Abstract

We introduce graphs associated to transport problems between discrete marginals, that allow to characterize the set of all optimizers given one primal optimizer. In particular, we establish that connectivity of those graphs is a necessary and sufficient condition for uniqueness of the dual optimizers. Moreover, we provide an algorithm that can efficiently compute the dual optimizer that is the limit, as the regularization parameter goes to zero, of the dual entropic optimizers. Our results find an application in a Stackelberg–Cournot–Nash game, for which we obtain existence and characterization of the equilibria.

Suggested Citation

  • Beatrice Acciaio & Berenice Anne Neumann, 2025. "Characterization of transport optimizers via graphs and applications to Stackelberg–Cournot–Nash equilibria," Mathematics and Financial Economics, Springer, volume 19, number 3, September.
  • Handle: RePEc:spr:mathfi:v:19:y:2025:i:1:d:10.1007_s11579-024-00375-x
    DOI: 10.1007/s11579-024-00375-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11579-024-00375-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11579-024-00375-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Julio Backhoff-Veraguas & Daniel Bartl & Mathias Beiglböck & Manu Eder, 2020. "Adapted Wasserstein distances and stability in mathematical finance," Finance and Stochastics, Springer, vol. 24(3), pages 601-632, July.
    2. Alfred Galichon, 2016. "Optimal transport methods in economics," Post-Print hal-03256830, HAL.
    3. Adrien Blanchet & Guillaume Carlier, 2016. "Optimal Transport and Cournot-Nash Equilibria," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 125-145, February.
    4. SCHMEIDLER, David, 1973. "Equilibrium points of nonatomic games," LIDAM Reprints CORE 146, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Acciaio, B. & Backhoff-Veraguas, J. & Zalashko, A., 2020. "Causal optimal transport and its links to enlargement of filtrations and continuous-time stochastic optimization," Stochastic Processes and their Applications, Elsevier, vol. 130(5), pages 2918-2953.
    6. Alfred Galichon, 2016. "Optimal Transport Methods in Economics," Economics Books, Princeton University Press, edition 1, number 10870.
    7. Alfred Galichon, 2016. "Optimal transport methods in economics," SciencePo Working papers hal-03256830, HAL.
    8. Blanchet, Adrien & Carlier, Guillaume, 2014. "From Nash to Cournot-Nash equilibria via the Monge-Kantorovich problem," TSE Working Papers 14-490, Toulouse School of Economics (TSE).
    9. B. Acciaio & M. Beiglböck & F. Penkner & W. Schachermayer, 2016. "A Model-Free Version Of The Fundamental Theorem Of Asset Pricing And The Super-Replication Theorem," Mathematical Finance, Wiley Blackwell, vol. 26(2), pages 233-251, April.
    10. Alfred Galichon, 2016. "Optimal transport methods in economics," SciencePo Working papers Main hal-03256830, HAL.
    11. Julio Backhoff-Veraguas & Daniel Bartl & Mathias Beiglbock & Manu Eder, 2019. "Adapted Wasserstein Distances and Stability in Mathematical Finance," Papers 1901.07450, arXiv.org, revised May 2020.
    12. Acciaio, B. & Backhoff-Veraguas, J. & Zalashko, A., 2020. "Causal optimal transport and its links to enlargement of filtrations and continuous-time stochastic optimization," LSE Research Online Documents on Economics 101864, London School of Economics and Political Science, LSE Library.
    13. Julio Backhoff-Veraguas & Xin Zhang, 2023. "Dynamic Cournot-Nash equilibrium: the non-potential case," Mathematics and Financial Economics, Springer, volume 17, number 1, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julio Backhoff-Veraguas & Xin Zhang, 2023. "Dynamic Cournot-Nash equilibrium: the non-potential case," Mathematics and Financial Economics, Springer, volume 17, number 1, September.
    2. Bingyan Han, 2022. "Distributionally robust risk evaluation with a causality constraint and structural information," Papers 2203.10571, arXiv.org, revised Aug 2024.
    3. Blanchet, Adrien & Carlier, Guillaume & Nenna, Luca, 2017. "Computation of Cournot-Nash equilibria by entropic regularization," TSE Working Papers 17-785, Toulouse School of Economics (TSE).
    4. Arthur Charpentier & Emmanuel Flachaire & Ewen Gallic, 2023. "Optimal Transport for Counterfactual Estimation: A Method for Causal Inference," Papers 2301.07755, arXiv.org.
    5. Itai Arieli & Yakov Babichenko & Fedor Sandomirskiy, 2023. "Feasible Conditional Belief Distributions," Papers 2307.07672, arXiv.org, revised Nov 2024.
    6. Andrew Lyasoff, 2023. "The Time-Interlaced Self-Consistent Master System of Heterogeneous-Agent Models," Papers 2303.12567, arXiv.org, revised May 2025.
    7. Roger Koenker, 2017. "Quantile regression 40 years on," CeMMAP working papers 36/17, Institute for Fiscal Studies.
    8. Kuan‐Ming Chen & Yu‐Wei Hsieh & Ming‐Jen Lin, 2023. "Reducing Recommendation Inequality Via Two‐Sided Matching: A Field Experiment Of Online Dating," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 1201-1221, August.
    9. Alfred Galichon & Bernard Salanié, 2023. "Structural Estimation of Matching Markets with Transferable Utility," Post-Print hal-03935865, HAL.
    10. Ashwin Kambhampati & Carlos Segura‐Rodriguez, 2022. "The optimal assortativity of teams inside the firm," RAND Journal of Economics, RAND Corporation, vol. 53(3), pages 484-515, September.
    11. Wayne Yuan Gao & Rui Wang, 2023. "IV Regressions without Exclusion Restrictions," Papers 2304.00626, arXiv.org, revised Jul 2023.
    12. Haiyan Liu & Bin Wang & Ruodu Wang & Sheng Chao Zhuang, 2023. "Distorted optimal transport," Papers 2308.11238, arXiv.org, revised May 2025.
    13. Principi, Giulio & Wakker, Peter P. & Wang, Ruodu, 0. "Antimonotonicity for preference axioms: the natural counterpart to comonotonicity," Theoretical Economics, Econometric Society.
    14. Florian Gunsilius & Susanne M. Schennach, 2017. "A nonlinear principal component decomposition," CeMMAP working papers 16/17, Institute for Fiscal Studies.
    15. Arthur Charpentier & Alfred Galichon & Lucas Vernet, 2019. "Optimal transport on large networks a practitioner guide," SciencePo Working papers Main hal-02173210, HAL.
    16. Beatrice Acciaio & Julio Backhoff-Veraguas & Junchao Jia, 2020. "Cournot-Nash equilibrium and optimal transport in a dynamic setting," Papers 2002.08786, arXiv.org, revised Nov 2020.
    17. Alfred Galichon, 2021. "The Unreasonable Effectiveness of Optimal Transport in Economics," SciencePo Working papers Main hal-03936221, HAL.
    18. Alfred Galichon, 2021. "The Unreasonable Effectiveness of Optimal Transport in Economics," Working Papers hal-03936221, HAL.
    19. Ruodu Wang & Zhenyuan Zhang, 2022. "Simultaneous Optimal Transport," Papers 2201.03483, arXiv.org, revised Dec 2024.
    20. Michael Greinecker & Christopher Kah, 2021. "Pairwise Stable Matching in Large Economies," Econometrica, Econometric Society, vol. 89(6), pages 2929-2974, November.

    More about this item

    Keywords

    Optimal transport; Connected graphs; Entropic regularization; Stackelberg–Cournot–Nash equilibria;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C62 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Existence and Stability Conditions of Equilibrium

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathfi:v:19:y:2025:i:1:d:10.1007_s11579-024-00375-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.