IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.13567.html
   My bibliography  Save this paper

Who With Whom? Learning Optimal Matching Policies

Author

Listed:
  • Yagan Hazard
  • Toru Kitagawa

Abstract

There are many economic contexts where the productivity and welfare performance of institutions and policies depend on who matches with whom. Examples include caseworkers and job seekers in job search assistance programs, medical doctors and patients, teachers and students, attorneys and defendants, and tax auditors and taxpayers, among others. Although reallocating individuals through a change in matching policy can be less costly than training personnel or introducing a new program, methods for learning optimal matching policies and their statistical performance are less studied than methods for other policy interventions. This paper develops a method to learn welfare optimal matching policies for two-sided matching problems in which a planner matches individuals based on the rich set of observable characteristics of the two sides. We formulate the learning problem as an empirical optimal transport problem with a match cost function estimated from training data, and propose estimating an optimal matching policy by maximizing the entropy regularized empirical welfare criterion. We derive a welfare regret bound for the estimated policy and characterize its convergence. We apply our proposal to the problem of matching caseworkers and job seekers in a job search assistance program, and assess its welfare performance in a simulation study calibrated with French administrative data.

Suggested Citation

  • Yagan Hazard & Toru Kitagawa, 2025. "Who With Whom? Learning Optimal Matching Policies," Papers 2507.13567, arXiv.org.
  • Handle: RePEc:arx:papers:2507.13567
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.13567
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alfred Galichon & Bernard Salanié, 2022. "Cupid’s Invisible Hand: Social Surplus and Identification in Matching Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 89(5), pages 2600-2629.
    2. Stoye, Jörg, 2009. "Minimax regret treatment choice with finite samples," Journal of Econometrics, Elsevier, vol. 151(1), pages 70-81, July.
    3. Alfred Galichon, 2016. "Optimal Transport Methods in Economics," Economics Books, Princeton University Press, edition 1, number 10870.
    4. Alfred Galichon, 2016. "Optimal transport methods in economics," SciencePo Working papers hal-03256830, HAL.
    5. Bhattacharya, Debopam, 2009. "Inferring Optimal Peer Assignment From Experimental Data," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 486-500.
    6. Alfred Galichon, 2016. "Optimal transport methods in economics," Post-Print hal-03256830, HAL.
    7. Alfred Galichon, 2016. "Optimal transport methods in economics," SciencePo Working papers Main hal-03256830, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Molinari, Francesca, 2020. "Microeconometrics with partial identification," Handbook of Econometrics, in: Steven N. Durlauf & Lars Peter Hansen & James J. Heckman & Rosa L. Matzkin (ed.), Handbook of Econometrics, edition 1, volume 7, chapter 0, pages 355-486, Elsevier.
    2. Principi, Giulio & Wakker, Peter P. & Wang, Ruodu, 2025. "Antimonotonicity for preference axioms: the natural counterpart to comonotonicity," Theoretical Economics, Econometric Society, vol. 20(3), July.
    3. Arthur Charpentier & Emmanuel Flachaire & Ewen Gallic, 2023. "Optimal Transport for Counterfactual Estimation: A Method for Causal Inference," Papers 2301.07755, arXiv.org.
    4. Florian Gunsilius & Susanne M. Schennach, 2017. "A nonlinear principal component decomposition," CeMMAP working papers 16/17, Institute for Fiscal Studies.
    5. Itai Arieli & Yakov Babichenko & Fedor Sandomirskiy, 2023. "Feasible Conditional Belief Distributions," Papers 2307.07672, arXiv.org, revised Nov 2024.
    6. Beatrice Acciaio & Berenice Anne Neumann, 2025. "Characterization of transport optimizers via graphs and applications to Stackelberg–Cournot–Nash equilibria," Mathematics and Financial Economics, Springer, volume 19, number 3, December.
    7. Andrew Lyasoff, 2023. "The Time-Interlaced Self-Consistent Master System of Heterogeneous-Agent Models," Papers 2303.12567, arXiv.org, revised May 2025.
    8. Andrei Voronin, 2025. "Generalized Optimal Transport," Papers 2507.22422, arXiv.org.
    9. Roger Koenker, 2017. "Quantile regression 40 years on," CeMMAP working papers 36/17, Institute for Fiscal Studies.
    10. Kuan‐Ming Chen & Yu‐Wei Hsieh & Ming‐Jen Lin, 2023. "Reducing Recommendation Inequality Via Two‐Sided Matching: A Field Experiment Of Online Dating," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 1201-1221, August.
    11. Keita Sunada & Kohei Izumi, 2025. "Optimal treatment assignment rules under capacity constraints," Papers 2506.12225, arXiv.org, revised Sep 2025.
    12. Arthur Charpentier & Alfred Galichon & Lucas Vernet, 2019. "Optimal transport on large networks a practitioner guide," SciencePo Working papers Main hal-02173210, HAL.
    13. Cetin, Umut, 2025. "Insider trading with penalties in continuous time," LSE Research Online Documents on Economics 128957, London School of Economics and Political Science, LSE Library.
    14. Alfred Galichon & Bernard Salanié, 2023. "Structural Estimation of Matching Markets with Transferable Utility," Post-Print hal-03935865, HAL.
    15. Ashwin Kambhampati & Carlos Segura‐Rodriguez, 2022. "The optimal assortativity of teams inside the firm," RAND Journal of Economics, RAND Corporation, vol. 53(3), pages 484-515, September.
    16. Omar Abdul Halim & Brendan Pass, 2025. "Multi-to one-dimensional screening and semi-discrete optimal transport," Papers 2506.21740, arXiv.org.
    17. Wayne Yuan Gao & Rui Wang, 2023. "IV Regressions without Exclusion Restrictions," Papers 2304.00626, arXiv.org, revised Jul 2023.
    18. Alfred Galichon, 2021. "The Unreasonable Effectiveness of Optimal Transport in Economics," SciencePo Working papers Main hal-03936221, HAL.
    19. Schennach, Susanne M., 2020. "Mismeasured and unobserved variables," Handbook of Econometrics, in: Steven N. Durlauf & Lars Peter Hansen & James J. Heckman & Rosa L. Matzkin (ed.), Handbook of Econometrics, edition 1, volume 7, chapter 0, pages 487-565, Elsevier.
    20. Alfred Galichon, 2021. "The Unreasonable Effectiveness of Optimal Transport in Economics," Working Papers hal-03936221, HAL.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.13567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.