Optimal Transport for Counterfactual Estimation: A Method for Causal Inference
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Alfred Galichon, 2016. "Optimal transport methods in economics," Post-Print hal-03256830, HAL.
- Stefan Wager & Susan Athey, 2018.
"Estimation and Inference of Heterogeneous Treatment Effects using Random Forests,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
- Wager, Stefan & Athey, Susan, 2017. "Estimation and Inference of Heterogeneous Treatment Effects Using Random Forests," Research Papers 3576, Stanford University, Graduate School of Business.
- Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
- Yu-Chin Hsu & Tsung-Chih Lai & Robert P. Lieli, 2022. "Counterfactual Treatment Effects: Estimation and Inference," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 240-255, January.
- Alfred Galichon, 2016. "Optimal Transport Methods in Economics," Economics Books, Princeton University Press, edition 1, number 10870.
- Alfred Galichon, 2016. "Optimal transport methods in economics," SciencePo Working papers hal-03256830, HAL.
- Jason Abrevaya & Yu-Chin Hsu & Robert P. Lieli, 2015.
"Estimating Conditional Average Treatment Effects,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 485-505, October.
- Jason Abrevaya & Yu-Chin Hsu & Robert P. Lieli, 2012. "Estimating Conditional Average Treatment Effects," CEU Working Papers 2012_16, Department of Economics, Central European University, revised 20 Jul 2012.
- Ho, Daniel E. & Imai, Kosuke & King, Gary & Stuart, Elizabeth A., 2007. "Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference," Political Analysis, Cambridge University Press, vol. 15(3), pages 199-236, July.
- Fan Li & Kari Lock Morgan & Alan M. Zaslavsky, 2018. "Balancing Covariates via Propensity Score Weighting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 390-400, January.
- Qingliang Fan & Yu-Chin Hsu & Robert P. Lieli & Yichong Zhang, 2022.
"Estimation of Conditional Average Treatment Effects With High-Dimensional Data,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 313-327, January.
- Qingliang Fan & Yu-Chin Hsu & Robert P. Lieli & Yichong Zhang, 2019. "Estimation of Conditional Average Treatment Effects with High-Dimensional Data," Papers 1908.02399, arXiv.org, revised Jul 2021.
- Alfred Galichon, 2016. "Optimal transport methods in economics," SciencePo Working papers Main hal-03256830, HAL.
- Jonathan M.V. Davis & Sara B. Heller, 2017. "Using Causal Forests to Predict Treatment Heterogeneity: An Application to Summer Jobs," American Economic Review, American Economic Association, vol. 107(5), pages 546-550, May.
- James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(2), pages 261-294.
- Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
- Rahul Singh & Liyuan Xu & Arthur Gretton, 2020. "Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves," Papers 2010.04855, arXiv.org, revised Oct 2022.
- Phillip Heiler & Michael C. Knaus, 2021.
"Effect or Treatment Heterogeneity? Policy Evaluation with Aggregated and Disaggregated Treatments,"
Papers
2110.01427, arXiv.org, revised Aug 2023.
- Heiler, Phillip & Knaus, Michael C., 2022. "Effect or Treatment Heterogeneity? Policy Evaluation with Aggregated and Disaggregated Treatments," IZA Discussion Papers 15580, Institute of Labor Economics (IZA).
- Wayne Yuan Gao & Rui Wang, 2023. "IV Regressions without Exclusion Restrictions," Papers 2304.00626, arXiv.org, revised Jul 2023.
- Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
- Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
- Florian Gunsilius & Susanne M. Schennach, 2017.
"A nonlinear principal component decomposition,"
CeMMAP working papers
16/17, Institute for Fiscal Studies.
- Florian Gunsilius & Susanne M. Schennach, 2017. "A nonlinear principal component decomposition," CeMMAP working papers CWP16/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Michael C Knaus, 2022.
"Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation],"
The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
- Knaus, Michael C., 2020. "Double Machine Learning based Program Evaluation under Unconfoundedness," Economics Working Paper Series 2004, University of St. Gallen, School of Economics and Political Science.
- Knaus, Michael C., 2020. "Double Machine Learning Based Program Evaluation under Unconfoundedness," IZA Discussion Papers 13051, Institute of Labor Economics (IZA).
- Michael C. Knaus, 2020. "Double Machine Learning based Program Evaluation under Unconfoundedness," Papers 2003.03191, arXiv.org, revised Jun 2022.
- Itai Arieli & Yakov Babichenko & Fedor Sandomirskiy, 2023. "Persuasion as Transportation," Papers 2307.07672, arXiv.org.
- Andrew Lyasoff, 2023. "Self-Aware Transport of Economic Agents," Papers 2303.12567, arXiv.org, revised Aug 2024.
- Kevin P. Josey & Elizabeth Juarez‐Colunga & Fan Yang & Debashis Ghosh, 2021. "A framework for covariate balance using Bregman distances," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 790-816, September.
- Roger Koenker, 2017. "Quantile regression 40 years on," CeMMAP working papers 36/17, Institute for Fiscal Studies.
- Kuan‐Ming Chen & Yu‐Wei Hsieh & Ming‐Jen Lin, 2023. "Reducing Recommendation Inequality Via Two‐Sided Matching: A Field Experiment Of Online Dating," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 1201-1221, August.
- Arthur Charpentier & Alfred Galichon & Lucas Vernet, 2019. "Optimal transport on large networks a practitioner guide," SciencePo Working papers Main hal-02173210, HAL.
- Michael Zimmert & Michael Lechner, 2019. "Nonparametric estimation of causal heterogeneity under high-dimensional confounding," Papers 1908.08779, arXiv.org.
- Alfred Galichon & Bernard Salanié, 2023.
"Structural Estimation of Matching Markets with Transferable Utility,"
Post-Print
hal-03935865, HAL.
- Alfred Galichon & Bernard Salanié, 2023. "Structural Estimation of Matching Markets with Transferable Utility," SciencePo Working papers Main hal-03935865, HAL.
- Ashwin Kambhampati & Carlos Segura‐Rodriguez, 2022. "The optimal assortativity of teams inside the firm," RAND Journal of Economics, RAND Corporation, vol. 53(3), pages 484-515, September.
- Riccardo Di Francesco, 2022. "Aggregation Trees," CEIS Research Paper 546, Tor Vergata University, CEIS, revised 20 Nov 2023.
- Alfred Galichon, 2021. "The Unreasonable Effectiveness of Optimal Transport in Economics," SciencePo Working papers Main hal-03936221, HAL.
- Michael Lechner & Jana Mareckova, 2024. "Comprehensive Causal Machine Learning," Papers 2405.10198, arXiv.org.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2023-02-20 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2301.07755. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.