IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v122y2012i10p3513-3544.html
   My bibliography  Save this article

From Sturm–Liouville problems to fractional and anomalous diffusions

Author

Listed:
  • D’Ovidio, Mirko

Abstract

Some fractional and anomalous diffusions are driven by equations involving fractional derivatives in both time and space. Such diffusions are processes with randomly varying times. In representing the solutions to those equations, the explicit laws of certain stable processes turn out to be fundamental. This paper directs one’s efforts towards the explicit representation of solutions to fractional and anomalous diffusions related to Sturm–Liouville problems of fractional order associated to fractional power function spaces. Furthermore, we study a new version of Bochner’s subordination rule and we establish some connections between subordination and space-fractional operators.

Suggested Citation

  • D’Ovidio, Mirko, 2012. "From Sturm–Liouville problems to fractional and anomalous diffusions," Stochastic Processes and their Applications, Elsevier, vol. 122(10), pages 3513-3544.
  • Handle: RePEc:eee:spapps:v:122:y:2012:i:10:p:3513-3544
    DOI: 10.1016/j.spa.2012.06.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414912001196
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beghin, Luisa & Orsingher, Enzo, 2009. "Iterated elastic Brownian motions and fractional diffusion equations," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 1975-2003, June.
    2. D'Ovidio, Mirko & Orsingher, Enzo, 2011. "Bessel processes and hyperbolic Brownian motions stopped at different random times," Stochastic Processes and their Applications, Elsevier, vol. 121(3), pages 441-465, March.
    3. Metzler, Ralf & Klafter, Joseph, 2000. "Boundary value problems for fractional diffusion equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 278(1), pages 107-125.
    4. Meerschaert, Mark M. & Scheffler, Hans-Peter, 2008. "Triangular array limits for continuous time random walks," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1606-1633, September.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:122:y:2012:i:10:p:3513-3544. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.