IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v127y2019icp389-399.html
   My bibliography  Save this article

Meshfree moving least squares method for nonlinear variable-order time fractional 2D telegraph equation involving Mittag–Leffler non-singular kernel

Author

Listed:
  • Hosseininia, M.
  • Heydari, M.H.

Abstract

This paper investigates a novel version for the nonlinear 2D telegraph equation involving variable-order (V-O) time fractional derivatives in the Atangana–Baleanu–Caputo sense with Mittag–Leffler non-singular kernel. A meshfree method based on the moving least squares (MLS) shape functions is proposed for the numerical solution of this class of problems. More precisely, the V-O fractional derivatives in this model are approximated by the finite difference scheme at first. Then, the θ-weighted method is utilized to derive a recursive algorithm. Next, the solution of the problem is expanded in terms of the MLS shape functions with undetermined coefficients. Eventually, by substituting this expansion and its partial derivatives into the original equation, solution of the problem in each time step is reduced to the solution of a linear system of algebraic equations. Several numerical examples are investigated to show the applicability, validity and accuracy of the presented method. The achieved numerical results reveal that the established method is high accurate in solving such V-O fractional models.

Suggested Citation

  • Hosseininia, M. & Heydari, M.H., 2019. "Meshfree moving least squares method for nonlinear variable-order time fractional 2D telegraph equation involving Mittag–Leffler non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 389-399.
  • Handle: RePEc:eee:chsofr:v:127:y:2019:i:c:p:389-399
    DOI: 10.1016/j.chaos.2019.07.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007791930267X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.07.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jacek Banasiak & Janusz R. Mika, 1998. "Singularly perturbed telegraph equations with applications in the random walk theory," International Journal of Stochastic Analysis, Hindawi, vol. 11, pages 1-20, January.
    2. Scalas, Enrico & Gorenflo, Rudolf & Mainardi, Francesco, 2000. "Fractional calculus and continuous-time finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 284(1), pages 376-384.
    3. Metzler, Ralf & Klafter, Joseph, 2000. "Boundary value problems for fractional diffusion equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 278(1), pages 107-125.
    4. Heydari, Mohammad Hossein & Avazzadeh, Zakieh & Yang, Yin, 2019. "A computational method for solving variable-order fractional nonlinear diffusion-wave equation," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 235-248.
    5. Atangana, Abdon, 2018. "Blind in a commutative world: Simple illustrations with functions and chaotic attractors," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 347-363.
    6. Mainardi, Francesco & Raberto, Marco & Gorenflo, Rudolf & Scalas, Enrico, 2000. "Fractional calculus and continuous-time finance II: the waiting-time distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 468-481.
    7. Heydari, Mohammad Hossein & Avazzadeh, Zakieh & Haromi, Malih Farzi, 2019. "A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 215-228.
    8. Atangana, Abdon, 2018. "Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 688-706.
    9. Atangana, Abdon & Gómez-Aguilar, J.F., 2018. "Fractional derivatives with no-index law property: Application to chaos and statistics," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 516-535.
    10. Heydari, Mohammad Hossein & Avazzadeh, Zakieh, 2018. "Legendre wavelets optimization method for variable-order fractional Poisson equation," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 180-190.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heydari, M.H., 2020. "Chebyshev cardinal functions for a new class of nonlinear optimal control problems generated by Atangana–Baleanu–Caputo variable-order fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    2. Ahmed, Hoda F. & Hashem, W.A., 2023. "A fully spectral tau method for a class of linear and nonlinear variable-order time-fractional partial differential equations in multi-dimensions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 214(C), pages 388-408.
    3. Qiao, Leijie & Qiu, Wenlin & Xu, Da, 2023. "Error analysis of fast L1 ADI finite difference/compact difference schemes for the fractional telegraph equation in three dimensions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 205-231.
    4. Heydari, M.H. & Atangana, A., 2019. "A cardinal approach for nonlinear variable-order time fractional Schrödinger equation defined by Atangana–Baleanu–Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 339-348.
    5. Abdelkawy, M.A. & Lopes, António M. & Babatin, Mohammed M., 2020. "Shifted fractional Jacobi collocation method for solving fractional functional differential equations of variable order," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    6. Fouladi, Somayeh & Dahaghin, Mohammad Shafi, 2022. "Numerical investigation of the variable-order fractional Sobolev equation with non-singular Mittag–Leffler kernel by finite difference and local discontinuous Galerkin methods," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    7. Pho, Kim-Hung & Heydari, M.H. & Tuan, Bui Anh & Mahmoudi, Mohammad Reza, 2020. "Numerical study of nonlinear 2D optimal control problems with multi-term variable-order fractional derivatives in the Atangana-Baleanu-Caputo sense," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    8. Heydari, M. H. & Atangana, A., 2020. "An optimization method based on the generalized Lucas polynomials for variable-order space-time fractional mobile-immobile advection-dispersion equation involving derivatives with non-singular kernels," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hosseininia, M. & Heydari, M.H., 2019. "Legendre wavelets for the numerical solution of nonlinear variable-order time fractional 2D reaction-diffusion equation involving Mittag–Leffler non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 400-407.
    2. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    3. Heydari, M.H., 2020. "Chebyshev cardinal functions for a new class of nonlinear optimal control problems generated by Atangana–Baleanu–Caputo variable-order fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    4. Marseguerra, Marzio & Zoia, Andrea, 2008. "Pre-asymptotic corrections to fractional diffusion equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2668-2674.
    5. Owolabi, Kolade M., 2019. "Mathematical modelling and analysis of love dynamics: A fractional approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 849-865.
    6. Marseguerra, M. & Zoia, A., 2008. "Monte Carlo evaluation of FADE approach to anomalous kinetics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(4), pages 345-357.
    7. Guo, Gang & Chen, Bin & Zhao, Xinjun & Zhao, Fang & Wang, Quanmin, 2015. "First passage time distribution of a modified fractional diffusion equation in the semi-infinite interval," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 279-290.
    8. Alkahtani, Badr Saad T., 2018. "Numerical analysis of dissipative system with noise model with the Atangana–Baleanu fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 239-248.
    9. Marseguerra, M. & Zoia, A., 2007. "Some insights in superdiffusive transport," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 1-14.
    10. Khan, Hasib & Gómez-Aguilar, J.F. & Khan, Aziz & Khan, Tahir Saeed, 2019. "Stability analysis for fractional order advection–reaction diffusion system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 737-751.
    11. Alqhtani, Manal & Owolabi, Kolade M. & Saad, Khaled M. & Pindza, Edson, 2022. "Efficient numerical techniques for computing the Riesz fractional-order reaction-diffusion models arising in biology," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    12. Ávalos-Ruiz, L.F. & Gómez-Aguilar, J.F. & Atangana, A. & Owolabi, Kolade M., 2019. "On the dynamics of fractional maps with power-law, exponential decay and Mittag–Leffler memory," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 364-388.
    13. Ahmed, Hoda F. & Hashem, W.A., 2023. "A fully spectral tau method for a class of linear and nonlinear variable-order time-fractional partial differential equations in multi-dimensions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 214(C), pages 388-408.
    14. Morales-Delgado, V.F. & Gómez-Aguilar, J.F. & Saad, Khaled M. & Khan, Muhammad Altaf & Agarwal, P., 2019. "Analytic solution for oxygen diffusion from capillary to tissues involving external force effects: A fractional calculus approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 48-65.
    15. Owolabi, Kolade M. & Karaagac, Berat, 2020. "Dynamics of multi-pulse splitting process in one-dimensional Gray-Scott system with fractional order operator," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    16. Avcı, Derya & Yetim, Aylin, 2019. "Cauchy and source problems for an advection-diffusion equation with Atangana–Baleanu derivative on the real line," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 361-365.
    17. Ávalos-Ruiz, L.F. & Zúñiga-Aguilar, C.J. & Gómez-Aguilar, J.F. & Escobar-Jiménez, R.F. & Romero-Ugalde, H.M., 2018. "FPGA implementation and control of chaotic systems involving the variable-order fractional operator with Mittag–Leffler law," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 177-189.
    18. Owolabi, Kolade M. & Pindza, Edson, 2019. "Modeling and simulation of nonlinear dynamical system in the frame of nonlocal and non-singular derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 146-157.
    19. Heydari, M.H. & Atangana, A., 2019. "A cardinal approach for nonlinear variable-order time fractional Schrödinger equation defined by Atangana–Baleanu–Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 339-348.
    20. Heydari, M. H. & Atangana, A., 2020. "An optimization method based on the generalized Lucas polynomials for variable-order space-time fractional mobile-immobile advection-dispersion equation involving derivatives with non-singular kernels," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:127:y:2019:i:c:p:389-399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.