IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v185y2021icp547-569.html
   My bibliography  Save this article

An efficient numerical method for estimating eigenvalues and eigenfunctions of fractional Sturm–Liouville problems

Author

Listed:
  • Kashfi Sadabad, Mahnaz
  • Jodayree Akbarfam, Aliasghar

Abstract

In this paper, we construct numerical schemes based on the Lagrange polynomial interpolation to solve Fractional Sturm–Liouville problems (FSLPs) in which the fractional derivatives are considered in the Caputo sense. First, we convert the differential equation with boundary conditions into integral form and discretize the fractional integral to generate a system of algebraic equations in the matrix form. Next, we calculate the set of approximate eigenvalues and corresponding eigenvectors. The eigenfunctions are approximated and some of their properties are investigated. The experimental rate of convergence of numerical calculations for the eigenvalues is reported and the order convergence of the numerical method is obtained. Finally, some examples are presented to illustrate the efficiency and accuracy of the numerical method.

Suggested Citation

  • Kashfi Sadabad, Mahnaz & Jodayree Akbarfam, Aliasghar, 2021. "An efficient numerical method for estimating eigenvalues and eigenfunctions of fractional Sturm–Liouville problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 547-569.
  • Handle: RePEc:eee:matcom:v:185:y:2021:i:c:p:547-569
    DOI: 10.1016/j.matcom.2021.01.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475421000094
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2021.01.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Metzler, Ralf & Klafter, Joseph, 2000. "Boundary value problems for fractional diffusion equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 278(1), pages 107-125.
    2. Al-Mdallal, Qasem M., 2009. "An efficient method for solving fractional Sturm–Liouville problems," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 183-189.
    3. Luo, Wei-Hua & Huang, Ting-Zhu & Wu, Guo-Cheng & Gu, Xian-Ming, 2016. "Quadratic spline collocation method for the time fractional subdiffusion equation," Applied Mathematics and Computation, Elsevier, vol. 276(C), pages 252-265.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aghazadeh, A. & Mahmoudi, Y. & Saei, F.D., 2023. "Legendre approximation method for computing eigenvalues of fourth order fractional Sturm–Liouville problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 286-301.
    2. Goel, Eti & Pandey, Rajesh K. & Yadav, S. & Agrawal, Om P., 2023. "A numerical approximation for generalized fractional Sturm–Liouville problem with application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 417-436.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goel, Eti & Pandey, Rajesh K. & Yadav, S. & Agrawal, Om P., 2023. "A numerical approximation for generalized fractional Sturm–Liouville problem with application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 417-436.
    2. Marseguerra, Marzio & Zoia, Andrea, 2008. "Pre-asymptotic corrections to fractional diffusion equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2668-2674.
    3. Wei, T. & Li, Y.S., 2018. "Identifying a diffusion coefficient in a time-fractional diffusion equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 151(C), pages 77-95.
    4. Iyiola, O.S. & Tasbozan, O. & Kurt, A. & Çenesiz, Y., 2017. "On the analytical solutions of the system of conformable time-fractional Robertson equations with 1-D diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 94(C), pages 1-7.
    5. Hosseininia, M. & Heydari, M.H., 2019. "Meshfree moving least squares method for nonlinear variable-order time fractional 2D telegraph equation involving Mittag–Leffler non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 389-399.
    6. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    7. Marseguerra, M. & Zoia, A., 2008. "Monte Carlo evaluation of FADE approach to anomalous kinetics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(4), pages 345-357.
    8. Wei, Q. & Yang, S. & Zhou, H.W. & Zhang, S.Q. & Li, X.N. & Hou, W., 2021. "Fractional diffusion models for radionuclide anomalous transport in geological repository systems," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    9. Alam, Mehboob & Shah, Dildar, 2021. "Hyers–Ulam stability of coupled implicit fractional integro-differential equations with Riemann–Liouville derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    10. Guo, Gang & Chen, Bin & Zhao, Xinjun & Zhao, Fang & Wang, Quanmin, 2015. "First passage time distribution of a modified fractional diffusion equation in the semi-infinite interval," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 279-290.
    11. Al-Mdallal, Qasem M., 2018. "On fractional-Legendre spectral Galerkin method for fractional Sturm–Liouville problems," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 261-267.
    12. Shah, Kamal & Arfan, Muhammad & Ullah, Aman & Al-Mdallal, Qasem & Ansari, Khursheed J. & Abdeljawad, Thabet, 2022. "Computational study on the dynamics of fractional order differential equations with applications," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    13. He, Ying & Zuo, Qian, 2021. "Jacobi-Davidson method for the second order fractional eigenvalue problems," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    14. Khudair, Ayad R. & Haddad, S.A.M. & khalaf, Sanaa L., 2017. "Restricted fractional differential transform for solving irrational order fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 81-85.
    15. Yu, Xiangnan & Zhang, Yong & Sun, HongGuang & Zheng, Chunmiao, 2018. "Time fractional derivative model with Mittag-Leffler function kernel for describing anomalous diffusion: Analytical solution in bounded-domain and model comparison," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 306-312.
    16. Lenzi, E.K. & Mendes, R.S. & Gonçalves, G. & Lenzi, M.K. & da Silva, L.R., 2006. "Fractional diffusion equation and Green function approach: Exact solutions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(2), pages 215-226.
    17. Wang, Yihong & Cao, Jianxiong, 2021. "A tailored finite point method for subdiffusion equation with anisotropic and discontinuous diffusivity," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    18. Marseguerra, M. & Zoia, A., 2007. "Some insights in superdiffusive transport," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 1-14.
    19. Allahviranloo, T. & Gouyandeh, Z. & Armand, A., 2015. "Numerical solutions for fractional differential equations by Tau-Collocation method," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 979-990.
    20. Alqhtani, Manal & Owolabi, Kolade M. & Saad, Khaled M. & Pindza, Edson, 2022. "Efficient numerical techniques for computing the Riesz fractional-order reaction-diffusion models arising in biology," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:185:y:2021:i:c:p:547-569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.