IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v121y2011i3p441-465.html
   My bibliography  Save this article

Bessel processes and hyperbolic Brownian motions stopped at different random times

Author

Listed:
  • D'Ovidio, Mirko
  • Orsingher, Enzo

Abstract

Iterated Bessel processes R[gamma](t),t>0,[gamma]>0 and their counterparts on hyperbolic spaces, i.e. hyperbolic Brownian motions Bhp(t),t>0 are examined and their probability laws derived. The higher-order partial differential equations governing the distributions of and are obtained and discussed. Processes of the form R[gamma](Tt),t>0,Bhp(Tt), t>0 where are examined and numerous probability laws derived, including the Student law, the arcsine laws (also their asymmetric versions), the Lamperti distribution of the ratio of independent positively skewed stable random variables and others. For the random variable (where and B[mu] is a Brownian motion with drift [mu]), the explicit probability law and the governing equation are obtained. For the hyperbolic Brownian motions on the Poincaré half-spaces , (of respective dimensions 2,3) we study Bhp(Tt),t>0 and the corresponding governing equation. Iterated processes are useful in modelling motions of particles on fractures idealized as Bessel processes (in Euclidean spaces) or as hyperbolic Brownian motions (in non-Euclidean spaces).

Suggested Citation

  • D'Ovidio, Mirko & Orsingher, Enzo, 2011. "Bessel processes and hyperbolic Brownian motions stopped at different random times," Stochastic Processes and their Applications, Elsevier, vol. 121(3), pages 441-465, March.
  • Handle: RePEc:eee:spapps:v:121:y:2011:i:3:p:441-465
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00260-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lachal, Aimé, 2008. "First hitting time and place for pseudo-processes driven by the equation subject to a linear drift," Stochastic Processes and their Applications, Elsevier, vol. 118(1), pages 1-27, January.
    2. Beghin, L. & Orsingher, E. & Ragozina, T., 2001. "Joint distributions of the maximum and the process for higher-order diffusions," Stochastic Processes and their Applications, Elsevier, vol. 94(1), pages 71-93, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. D’Ovidio, Mirko, 2012. "From Sturm–Liouville problems to fractional and anomalous diffusions," Stochastic Processes and their Applications, Elsevier, vol. 122(10), pages 3513-3544.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:121:y:2011:i:3:p:441-465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.