IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v119y2009i12p4061-4087.html
   My bibliography  Save this article

A simulation approach to optimal stopping under partial information

Author

Listed:
  • Ludkovski, Michael

Abstract

We study the numerical solution of nonlinear partially observed optimal stopping problems. The system state is taken to be a multi-dimensional diffusion and drives the drift of the observation process, which is another multi-dimensional diffusion with correlated noise. Such models where the controller is not fully aware of her environment are of interest in applied probability and financial mathematics. We propose a new approximate numerical algorithm based on the particle filtering and regression Monte Carlo methods. The algorithm maintains a continuous state space and yields an integrated approach to the filtering and control sub-problems. Our approach is entirely simulation-based and therefore allows for a robust implementation with respect to model specification. We carry out the error analysis of our scheme and illustrate with several computational examples. An extension to discretely observed stochastic volatility models is also considered.

Suggested Citation

  • Ludkovski, Michael, 2009. "A simulation approach to optimal stopping under partial information," Stochastic Processes and their Applications, Elsevier, vol. 119(12), pages 4061-4087, December.
  • Handle: RePEc:eee:spapps:v:119:y:2009:i:12:p:4061-4087
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(09)00158-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael W. Brandt & Amit Goyal & Pedro Santa-Clara & Jonathan R. Stroud, 2005. "A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning About Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 831-873.
    2. Schwartz, Eduardo S, 1997. "The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    3. Giuseppe Moscarini & Lones Smith, 2001. "The Optimal Level of Experimentation," Econometrica, Econometric Society, vol. 69(6), pages 1629-1644, November.
    4. Décamps, Jean-Paul & Mariotti, Thomas & Villeneuve, Stéphane, 2000. "Investment Timing under Incomplete Information," IDEI Working Papers 115, Institut d'Économie Industrielle (IDEI), Toulouse, revised Apr 2004.
    5. Peter Muller & Bruno Sanso & Maria De Iorio, 2004. "Optimal Bayesian Design by Inhomogeneous Markov Chain Simulation," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 788-798, January.
    6. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    7. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    8. Pham Huyên & Runggaldier Wolfgang & Sellami Afef, 2005. "Approximation by quantization of the filter process and applications to optimal stopping problems under partial observation," Monte Carlo Methods and Applications, De Gruyter, vol. 11(1), pages 57-81, March.
    9. Uwe Jensen & Guang-Hui Hsu, 1993. "Optimal Stopping by Means of Point Process Observations with Applications in Reliability," Mathematics of Operations Research, INFORMS, vol. 18(3), pages 645-657, August.
    10. Jakv{s}a Cvitani'c & Robert Liptser & Boris Rozovskii, 2006. "A filtering approach to tracking volatility from prices observed at random times," Papers math/0612212, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adesoji O. Adelaja & Ramyani Mukhopadhyay, 2022. "Time‐to‐completion for mergers and acquisitions in the food and agribusiness industry," Agribusiness, John Wiley & Sons, Ltd., vol. 38(3), pages 579-607, July.
    2. S'ergio C. Bezerra & Alberto Ohashi & Francesco Russo & Francys de Souza, 2017. "Discrete-type approximations for non-Markovian optimal stopping problems: Part II," Papers 1707.05250, arXiv.org, revised Dec 2019.
    3. Li Kai & Nyström Kaj & Olofsson Marcus, 2015. "Optimal switching problems under partial information," Monte Carlo Methods and Applications, De Gruyter, vol. 21(2), pages 91-120, June.
    4. Sérgio C. Bezerra & Alberto Ohashi & Francesco Russo & Francys Souza, 2020. "Discrete-type Approximations for Non-Markovian Optimal Stopping Problems: Part II," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 1221-1255, September.
    5. Dorival Le~ao & Alberto Ohashi & Francesco Russo, 2017. "Discrete-type approximations for non-Markovian optimal stopping problems: Part I," Papers 1707.05234, arXiv.org, revised Jun 2019.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastian Sund & Lars H. Sendstad & Jacco J. J. Thijssen, 2022. "Kalman filter approach to real options with active learning," Computational Management Science, Springer, vol. 19(3), pages 457-490, July.
    2. Marcelo G. Figueroa, 2006. "Pricing Multiple Interruptible-Swing Contracts," Birkbeck Working Papers in Economics and Finance 0606, Birkbeck, Department of Economics, Mathematics & Statistics.
    3. Abdullah Almansour & Margaret Insley, 2016. "The Impact of Stochastic Extraction Cost on the Value of an Exhaustible Resource: An Application to the Alberta Oil Sands," The Energy Journal, , vol. 37(2), pages 61-88, April.
    4. Seiji Harikae & James S. Dyer & Tianyang Wang, 2021. "Valuing Real Options in the Volatile Real World," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 171-189, January.
    5. Yuval Arbel & Danny Ben-Shahar & Eyal Sulganik, 2009. "Mean Reversion and Momentum: Another Look at the Price-Volume Correlation in the Real Estate Market," The Journal of Real Estate Finance and Economics, Springer, vol. 39(3), pages 316-335, October.
    6. Rongju Zhang & Nicolas Langren'e & Yu Tian & Zili Zhu & Fima Klebaner & Kais Hamza, 2018. "Local Control Regression: Improving the Least Squares Monte Carlo Method for Portfolio Optimization," Papers 1803.11467, arXiv.org, revised Sep 2018.
    7. Luis M. Abadie & José M. Chamorro, 2009. "Monte Carlo valuation of natural gas investments," Review of Financial Economics, John Wiley & Sons, vol. 18(1), pages 10-22, January.
    8. Simon Lysbjerg Hansen, 2005. "A Malliavin-based Monte-Carlo Approach for Numerical Solution of Stochastic Control Problems: Experiences from Merton's Problem," Computing in Economics and Finance 2005 391, Society for Computational Economics.
    9. Nicholas Davey & Nicolas Langrené & Wen Chen & Jonathan R. Rhodes & Simon Dunstall & Saman Halgamuge, 2023. "Designing higher value roads to preserve species at risk by optimally controlling traffic flow," Annals of Operations Research, Springer, vol. 320(2), pages 663-693, January.
    10. Noshchenko, Olga & Hagspiel, Verena, 2024. "Environmental and economic multi-objective real options analysis: Electrification choices for field development investment planning," Energy, Elsevier, vol. 295(C).
    11. Jeon, Junkee & Kim, Geonwoo, 2022. "Pricing European continuous-installment currency options with mean-reversion," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    12. Max F. Schöne & Stefan Spinler, 2017. "A four-factor stochastic volatility model of commodity prices," Review of Derivatives Research, Springer, vol. 20(2), pages 135-165, July.
    13. Ikefuji, Masako & Laeven, Roger J.A. & Magnus, Jan R. & Muris, Chris, 2020. "Expected utility and catastrophic risk in a stochastic economy–climate model," Journal of Econometrics, Elsevier, vol. 214(1), pages 110-129.
    14. de Jong, C.M. & Huisman, R., 2002. "Option Formulas for Mean-Reverting Power Prices with Spikes," ERIM Report Series Research in Management ERS-2002-96-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    15. Mark Broadie & Weiwei Shen, 2016. "High-Dimensional Portfolio Optimization With Transaction Costs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-49, June.
    16. Mehlkopf, R.J., 2011. "Risk sharing with the unborn," Other publications TiSEM fe8a8df6-455f-4624-af10-9, Tilburg University, School of Economics and Management.
    17. de Jong, C.M., 2005. "The Nature of Power Spikes: a regime-switch approach," ERIM Report Series Research in Management ERS-2005-052-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    18. León, Angel & Vaello-Sebastià, Antoni, 2010. "A simulation-based algorithm for American executive stock option valuation," Finance Research Letters, Elsevier, vol. 7(1), pages 14-23, March.
    19. Meritxell Albertí & Ángel León & Gerard Llobet, 2003. "Evaluation of a Taxi Sector Reform: A Real Options Approach," Working Papers wp2003_0312, CEMFI.
    20. Christian Bender & Nikolaus Schweizer, 2019. "`Regression Anytime' with Brute-Force SVD Truncation," Papers 1908.08264, arXiv.org, revised Oct 2020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:119:y:2009:i:12:p:4061-4087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.