IDEAS home Printed from https://ideas.repec.org/a/eee/retrec/v95y2022ics0739885922000543.html
   My bibliography  Save this article

Does the joint implementation of hard and soft transportation policies lead to travel behavior change? An experimental analysis

Author

Listed:
  • Piras, Francesco
  • Sottile, Eleonora
  • Tuveri, Giovanni
  • Meloni, Italo

Abstract

Over the last few decades, there has been a growing interest in a variety of travel demand management strategies, both hard and soft, aimed at persuading people to reduce their car use. However, only few studies employed predictive models to assess the effectiveness of soft interventions and understand the impact of both objective and socio-psychological variables on changes in travel behavior. Additionally, though a combination of hard and soft measures is recognized as achieving the best results in reducing car use, few studies differentiate between the effects of the two types. The aim of this work is to quantify the effect of a combination of hard (introduction of a new light railway line) and soft measures (Personalized Travel Plan program) among a group of car drivers in the metropolitan area of Cagliari (Sardinia, Italy). We used data collected before and after the implementation of a Personalized Travel Plan program, where a control group was identified to disentangle the effect of the hard from the soft measure. We specified and estimated an Integrated Choice and Laten Variable (ICLV) model to assess the effect of both objective characteristics and some socio-psychological variables on the choice to use a new light railway service or not. Model results point out that people who lived along the light rail corridor and received and read their Personalized Travel Plan were more likely to switch from car to the light rail. Furthermore, we found that the parameters associated with the psycho-social variables Attachment to the car and Dislike of public transport have a negative influence on the probability to use the new travel alternative. At the same time, our findings on the effect of the soft measure need to be interpreted with some caution as its impact on choice probability was mitigated by travel distance and psycho-social variables.

Suggested Citation

  • Piras, Francesco & Sottile, Eleonora & Tuveri, Giovanni & Meloni, Italo, 2022. "Does the joint implementation of hard and soft transportation policies lead to travel behavior change? An experimental analysis," Research in Transportation Economics, Elsevier, vol. 95(C).
  • Handle: RePEc:eee:retrec:v:95:y:2022:i:c:s0739885922000543
    DOI: 10.1016/j.retrec.2022.101233
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0739885922000543
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.retrec.2022.101233?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sengupta, Raja & Walker, Joan L., 2015. "Quantified Traveler: Travel Feedback Meets the Cloud to Change Behavior," University of California Transportation Center, Working Papers qt2vw4n4zc, University of California Transportation Center.
    2. Ding, Chuan & Cao, Xinyu & Wang, Yunpeng, 2018. "Synergistic effects of the built environment and commuting programs on commute mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 104-118.
    3. Bamberg, Sebastian & Fujii, Satoshi & Friman, Margareta & Gärling, Tommy, 2011. "Behaviour theory and soft transport policy measures," Transport Policy, Elsevier, vol. 18(1), pages 228-235, January.
    4. Corinne Mulley & Liang Ma, 2018. "How the longer term success of a social marketing program is influenced by socio-demographics and the built environment," Transportation, Springer, vol. 45(2), pages 291-309, March.
    5. Lee, Shin S. & Senior, Martyn L., 2013. "Do light rail services discourage car ownership and use? Evidence from Census data for four English cities," Journal of Transport Geography, Elsevier, vol. 29(C), pages 11-23.
    6. Stradling, Stephen & Carreno, Michael & Rye, Tom & Noble, Allyson, 2007. "Passenger perceptions and the ideal urban bus journey experience," Transport Policy, Elsevier, vol. 14(4), pages 283-292, July.
    7. De Witte, Astrid & Hollevoet, Joachim & Dobruszkes, Frédéric & Hubert, Michel & Macharis, Cathy, 2013. "Linking modal choice to motility: A comprehensive review," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 329-341.
    8. Marlon G. Boarnet & Xize Wang & Douglas Houston, 2017. "Can New Light Rail Reduce Personal Vehicle Carbon Emissions? A Before‐After, Experimental‐Control Evaluation In Los Angeles," Journal of Regional Science, Wiley Blackwell, vol. 57(3), pages 523-539, June.
    9. Tørnblad, Silje H. & Kallbekken, Steffen & Korneliussen, Kristine & Mideksa, Torben K., 2014. "Using mobility management to reduce private car use: Results from a natural field experiment in Norway," Transport Policy, Elsevier, vol. 32(C), pages 9-15.
    10. Dastjerdi, Aliasghar Mehdizadeh & Kaplan, Sigal & de Abreu e Silva, Joao & Anker Nielsen, Otto & Camara Pereira, Francisco, 2019. "Use intention of mobility-management travel apps: The role of users goals, technophile attitude and community trust," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 114-135.
    11. Vij, Akshay & Walker, Joan L., 2016. "How, when and why integrated choice and latent variable models are latently useful," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 192-217.
    12. Peter Stopher & Stephen Greaves, 2007. "Guidelines for samplers: measuring a change in behaviour from before and after surveys," Transportation, Springer, vol. 34(1), pages 1-16, January.
    13. Adam Rosenfield & John P. Attanucci & Jinhua Zhao, 2020. "A randomized controlled trial in travel demand management," Transportation, Springer, vol. 47(4), pages 1907-1932, August.
    14. Margareta Friman & Lina Larhult & Tommy Gärling, 2013. "An analysis of soft transport policy measures implemented in Sweden to reduce private car use," Transportation, Springer, vol. 40(1), pages 109-129, January.
    15. Stopher, Peter & Clifford, Eoin & Swann, Natalie & Zhang, Yun, 2009. "Evaluating voluntary travel behaviour change: Suggested guidelines and case studies," Transport Policy, Elsevier, vol. 16(6), pages 315-324, November.
    16. S. Cairns & L. Sloman & C. Newson & J. Anable & A. Kirkbride & P. Goodwin, 2008. "Smarter Choices: Assessing the Potential to Achieve Traffic Reduction Using ‘Soft Measures’," Transport Reviews, Taylor & Francis Journals, vol. 28(5), pages 593-618, January.
    17. Oberski, Daniel, 2014. "lavaan.survey: An R Package for Complex Survey Analysis of Structural Equation Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 57(i01).
    18. Steg, Linda, 2005. "Car use: lust and must. Instrumental, symbolic and affective motives for car use," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(2-3), pages 147-162.
    19. Ariella S. Kristal & Ashley V. Whillans, 2020. "What we can learn from five naturalistic field experiments that failed to shift commuter behaviour," Nature Human Behaviour, Nature, vol. 4(2), pages 169-176, February.
    20. Liang Ma & Corinne Mulley & Wen Liu, 2017. "Social marketing and the built environment: What matters for travel behaviour change?," Transportation, Springer, vol. 44(5), pages 1147-1167, September.
    21. Sottile, Eleonora & Giacchetti, Tommaso & Tuveri, Giovanni & Piras, Francesco & Calli, Daniele & Concas, Vittoria & Zamberlan, Leonardo & Meloni, Italo & Carrese, Stefano, 2021. "An innovative GPS smartphone based strategy for university mobility management: A case study at the University of RomaTre, Italy," Research in Transportation Economics, Elsevier, vol. 85(C).
    22. Astrid De Witte & Joachim Hollevoet & Frédéric Dobruszkes & Michel Hubert & Cathy Macharis, 2013. "Linking modal choice to motility: a comprehensive review," ULB Institutional Repository 2013/138176, ULB -- Universite Libre de Bruxelles.
    23. Fujii, Satoshi & Taniguchi, Ayako, 2006. "Determinants of the effectiveness of travel feedback programs--a review of communicative mobility management measures for changing travel behaviour in Japan," Transport Policy, Elsevier, vol. 13(5), pages 339-348, September.
    24. Bhattacharjee, Sutapa & Goetz, Andrew R., 2012. "Impact of light rail on traffic congestion in Denver," Journal of Transport Geography, Elsevier, vol. 22(C), pages 262-270.
    25. Eriksson, Louise & Garvill, Jörgen & Nordlund, Annika M., 2008. "Acceptability of single and combined transport policy measures: The importance of environmental and policy specific beliefs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(8), pages 1117-1128, October.
    26. Taylor, Michael A. P. & Ampt, Elizabeth S., 2003. "Travelling smarter down under: policies for voluntary travel behaviour change in Australia," Transport Policy, Elsevier, vol. 10(3), pages 165-177, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sottile, Eleonora & Giacchetti, Tommaso & Tuveri, Giovanni & Piras, Francesco & Calli, Daniele & Concas, Vittoria & Zamberlan, Leonardo & Meloni, Italo & Carrese, Stefano, 2021. "An innovative GPS smartphone based strategy for university mobility management: A case study at the University of RomaTre, Italy," Research in Transportation Economics, Elsevier, vol. 85(C).
    2. Li, Tianhao & Chen, Peng & Tian, Ye, 2021. "Personalized incentive-based peak avoidance and drivers’ travel time-savings," Transport Policy, Elsevier, vol. 100(C), pages 68-80.
    3. Francesca Cellina & Dominik Bucher & Francesca Mangili & José Veiga Simão & Roman Rudel & Martin Raubal, 2019. "A Large Scale, App-Based Behaviour Change Experiment Persuading Sustainable Mobility Patterns: Methods, Results and Lessons Learnt," Sustainability, MDPI, vol. 11(9), pages 1-23, May.
    4. Italo Meloni & Benedetta Sanjust di Teulada & Erika Spissu, 2017. "Lessons learned from a personalized travel planning (PTP) research program to reduce car dependence," Transportation, Springer, vol. 44(4), pages 853-870, July.
    5. Bamberg, Sebastian & Fujii, Satoshi & Friman, Margareta & Gärling, Tommy, 2011. "Behaviour theory and soft transport policy measures," Transport Policy, Elsevier, vol. 18(1), pages 228-235, January.
    6. Tomás Ruiz & Rosa Arroyo & Lidón Mars & Daniel Casquero, 2018. "Effects of a Travel Behaviour Change Program on Sustainable Travel," Sustainability, MDPI, vol. 10(12), pages 1-22, December.
    7. Santos, Georgina & Behrendt, Hannah & Teytelboym, Alexander, 2010. "Part II: Policy instruments for sustainable road transport," Research in Transportation Economics, Elsevier, vol. 28(1), pages 46-91.
    8. Mattioli, Giulio & Anable, Jillian & Vrotsou, Katerina, 2016. "Car dependent practices: Findings from a sequence pattern mining study of UK time use data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 89(C), pages 56-72.
    9. Timmer, Sebastian & Bösehans, Gustav & Henkel, Sven, 2023. "Behavioural norms or personal gains? – An empirical analysis of commuters‘ intention to switch to multimodal mobility behaviour," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    10. Creemers, Lieve & Tormans, Hans & Bellemans, Tom & Janssens, Davy & Wets, Geert & Cools, Mario, 2015. "Knowledge of the concept Light Rail Transit: Exploring its relevance and identification of the determinants of various knowledge levels," Transportation Research Part A: Policy and Practice, Elsevier, vol. 74(C), pages 31-43.
    11. Melinda Matyas & Maria Kamargianni, 2019. "The potential of mobility as a service bundles as a mobility management tool," Transportation, Springer, vol. 46(5), pages 1951-1968, October.
    12. Stopher, Peter & Clifford, Eoin & Swann, Natalie & Zhang, Yun, 2009. "Evaluating voluntary travel behaviour change: Suggested guidelines and case studies," Transport Policy, Elsevier, vol. 16(6), pages 315-324, November.
    13. Mathieu Lambotte & Sandrine Mathy & Anna Risch & Carole Treibich, 2022. "Spreading active transportation: peer effects and key players in the workplace," Post-Print hal-03702684, HAL.
    14. Tørnblad, Silje H. & Kallbekken, Steffen & Korneliussen, Kristine & Mideksa, Torben K., 2014. "Using mobility management to reduce private car use: Results from a natural field experiment in Norway," Transport Policy, Elsevier, vol. 32(C), pages 9-15.
    15. Chowdhury, Subeh & Ceder, Avishai (Avi), 2016. "Users’ willingness to ride an integrated public-transport service: A literature review," Transport Policy, Elsevier, vol. 48(C), pages 183-195.
    16. Bouscasse, H. & Bonnel, P., 2016. "Socio-psychological determinants of mode choice habits," Working Papers 2016-05, Grenoble Applied Economics Laboratory (GAEL).
    17. Eldeeb, Gamal & Mohamed, Moataz & Páez, Antonio, 2021. "Built for active travel? Investigating the contextual effects of the built environment on transportation mode choice," Journal of Transport Geography, Elsevier, vol. 96(C).
    18. Liang Ma & Corinne Mulley & Wen Liu, 2017. "Social marketing and the built environment: What matters for travel behaviour change?," Transportation, Springer, vol. 44(5), pages 1147-1167, September.
    19. Enaux, Christophe & Gerber, Philippe, 2014. "Beliefs about energy, a factor in daily ecological mobility?," Journal of Transport Geography, Elsevier, vol. 41(C), pages 154-162.
    20. Corinne Mulley & Liang Ma, 2018. "How the longer term success of a social marketing program is influenced by socio-demographics and the built environment," Transportation, Springer, vol. 45(2), pages 291-309, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:retrec:v:95:y:2022:i:c:s0739885922000543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/620614/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.