IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v7y2003i4p353-366.html
   My bibliography  Save this article

Life cycle economic analysis of fuel ethanol derived from cassava in southwest China

Author

Listed:
  • Zhang, Cheng
  • Han, Weijian
  • Jing, Xuedong
  • Pu, Gengqiang
  • Wang, Chengtao

Abstract

For energy security and environmental improvement reasons, the Chinese government is developing biomass ethanol as one of its transportation fuels. Cassava is a good feedstock to produce this ethanol because it has a high starch content and it is abundant in the southern provinces. A computer-based cost model has been developed to assess the life cycle economics of ethanol produced from cassava. The results are compared to gasoline as a base-line case. Although ethanol fuel is not currently competitive with conventional gasoline, these life cycle cost results indicate that, at present market prices, ethanol has the potential to be competitive if there are incentives and improved cassava yields. In addition, this renewable energy could help to alleviate poverty, improve land utilization and bring energy independence in Guangxi province in southeast China. This computer model will be an important tool for the energy policy makers to understand whether an energy alternative is cost-competitive, as well as providing a way to find appropriate measures throughout the entire life cycle that optimizes the process and removes the economic barriers.

Suggested Citation

  • Zhang, Cheng & Han, Weijian & Jing, Xuedong & Pu, Gengqiang & Wang, Chengtao, 2003. "Life cycle economic analysis of fuel ethanol derived from cassava in southwest China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(4), pages 353-366, August.
  • Handle: RePEc:eee:rensus:v:7:y:2003:i:4:p:353-366
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(03)00057-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Quintero, J.A. & Montoya, M.I. & Sánchez, O.J. & Giraldo, O.H. & Cardona, C.A., 2008. "Fuel ethanol production from sugarcane and corn: Comparative analysis for a Colombian case," Energy, Elsevier, vol. 33(3), pages 385-399.
    2. Ge, Jianping & Lei, Yalin & Tokunaga, Suminori, 2014. "Non-grain fuel ethanol expansion and its effects on food security: A computable general equilibrium analysis for China," Energy, Elsevier, vol. 65(C), pages 346-356.
    3. Liu, Ronghou & Li, Jinxia & Shen, Fei, 2008. "Refining bioethanol from stalk juice of sweet sorghum by immobilized yeast fermentation," Renewable Energy, Elsevier, vol. 33(5), pages 1130-1135.
    4. Nguyen, Thu Lan T. & Gheewala, Shabbir H., 2008. "Fuel ethanol from cane molasses in Thailand: Environmental and cost performance," Energy Policy, Elsevier, vol. 36(5), pages 1589-1599, May.
    5. Zhou, Wei & Yang, Hongxing & Rissanen, Markku & Nygren, Bertil & Yan, Jinyue, 2012. "Decrease of energy demand for bioethanol-based polygeneration system through case study," Applied Energy, Elsevier, vol. 95(C), pages 305-311.
    6. Sánchez, Antonio Santos & Silva, Yuri Lopes & Kalid, Ricardo Araújo & Cohim, Eduardo & Torres, Ednildo Andrade, 2017. "Waste bio-refineries for the cassava starch industry: New trends and review of alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1265-1275.
    7. Silalertruksa, Thapat & Gheewala, Shabbir H., 2010. "Security of feedstocks supply for future bio-ethanol production in Thailand," Energy Policy, Elsevier, vol. 38(11), pages 7476-7486, November.
    8. Amigun, B. & von Blottnitz, H., 2009. "Cost analyses and predictions for a fuel ethanol plant in a rural and landlocked African country: Lang factor approach," International Journal of Production Economics, Elsevier, vol. 119(1), pages 207-216, May.
    9. Hu, Zhiyuan & Fang, Fang & Ben, DaoFeng & Pu, Gengqiang & Wang, Chengtao, 2004. "Net energy, CO2 emission, and life-cycle cost assessment of cassava-based ethanol as an alternative automotive fuel in China," Applied Energy, Elsevier, vol. 78(3), pages 247-256, July.
    10. Daylan, B. & Ciliz, N., 2016. "Life cycle assessment and environmental life cycle costing analysis of lignocellulosic bioethanol as an alternative transportation fuel," Renewable Energy, Elsevier, vol. 89(C), pages 578-587.
    11. Siros Tongchure, 2013. "Cassava Smallholders’ Participation in Contract Farming in Nakhon Ratchasrima Province, Thailand," Journal of Social and Development Sciences, AMH International, vol. 4(7), pages 332-338.
    12. Yeboah, Osei-Agyeman & Ofori-Boadu, Victor & Li, Tongzhe, 2010. "China-U.S. Potential Non-food Ethanol Exportation," 2010 Annual Meeting, February 6-9, 2010, Orlando, Florida 56469, Southern Agricultural Economics Association.
    13. Bell, David R. & Silalertruksa, Thapat & Gheewala, Shabbir H. & Kamens, Richard, 2011. "The net cost of biofuels in Thailand--An economic analysis," Energy Policy, Elsevier, vol. 39(2), pages 834-843, February.
    14. Wu, Bo & Wang, Yan-Wei & Dai, Yong-Hua & Song, Chao & Zhu, Qi-Li & Qin, Han & Tan, Fu-Rong & Chen, Han-Cheng & Dai, Li-Chun & Hu, Guo-Quan & He, Ming-Xiong, 2021. "Current status and future prospective of bio-ethanol industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    15. Ma, Hengyun & Oxley, Les & Gibson, John & Li, Wen, 2010. "A survey of China's renewable energy economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 438-445, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:7:y:2003:i:4:p:353-366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.