IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v77y2017icp1385-1402.html
   My bibliography  Save this article

High flux solar simulators for concentrated solar thermal research: A review

Author

Listed:
  • Gallo, Alessandro
  • Marzo, Aitor
  • Fuentealba, Edward
  • Alonso, Elisa

Abstract

When the availability of solar radiation is not enough to develop experimental investigation in the field of concentrating solar energy, solar simulators are a widely employed solution. They represent a source of artificial light, which can be comparable with concentrated sunlight. Besides, they provide advantages such as better parametric control of the process under study. In this work, it is presented an extensive review of the high flux solar simulators that are available in the different solar energy research centers around the world. Many of them are similarly designed and have common elements. Others are based on different concepts and their particular features are also pointed out. The main applications of solar simulators reported in literature are discussed along the work and remarked then in a specific section.

Suggested Citation

  • Gallo, Alessandro & Marzo, Aitor & Fuentealba, Edward & Alonso, Elisa, 2017. "High flux solar simulators for concentrated solar thermal research: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1385-1402.
  • Handle: RePEc:eee:rensus:v:77:y:2017:i:c:p:1385-1402
    DOI: 10.1016/j.rser.2017.01.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117300655
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.01.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gokon, Nobuyuki & Izawa, Takuya & Kodama, Tatsuya, 2015. "Steam gasification of coal cokes by internally circulating fluidized-bed reactor by concentrated Xe-light radiation for solar syngas production," Energy, Elsevier, vol. 79(C), pages 264-272.
    2. Manuel Romero & José González-Aguilar, 2014. "Solar thermal CSP technology," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(1), pages 42-59, January.
    3. Meier, Anton & Bonaldi, Enrico & Cella, Gian Mario & Lipinski, Wojciech & Wuillemin, Daniel & Palumbo, Robert, 2004. "Design and experimental investigation of a horizontal rotary reactor for the solar thermal production of lime," Energy, Elsevier, vol. 29(5), pages 811-821.
    4. Xiao, Gang & Guo, Kaikai & Luo, Zhongyang & Ni, Mingjiang & Zhang, Yanmei & Wang, Cheng, 2014. "Simulation and experimental study on a spiral solid particle solar receiver," Applied Energy, Elsevier, vol. 113(C), pages 178-188.
    5. Zhang, H.L. & Baeyens, J. & Degrève, J. & Cacères, G., 2013. "Concentrated solar power plants: Review and design methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 466-481.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Avila-Marin, Antonio L., 2022. "CFD parametric analysis of wire meshes open volumetric receivers with axial-varied porosity and comparison with small-scale solar receiver tests," Renewable Energy, Elsevier, vol. 193(C), pages 1094-1105.
    2. Li, Qing & Wang, Jikang & Qiu, Yu & Xu, Mingpan & Wei, Xiudong, 2021. "A modified indirect flux mapping system for high-flux solar simulators," Energy, Elsevier, vol. 235(C).
    3. Garrido, Jorge & Aichmayer, Lukas & Wang, Wujun & Laumert, Björn, 2017. "Characterization of the KTH high-flux solar simulator combining three measurement methods," Energy, Elsevier, vol. 141(C), pages 2091-2099.
    4. Zhu, Qibin & Xuan, Yimin & Liu, Xianglei & Yang, Lili & Lian, Wenlei & Zhang, Jin, 2020. "A 130 kWe solar simulator with tunable ultra-high flux and characterization using direct multiple lamps mapping," Applied Energy, Elsevier, vol. 270(C).
    5. Xie, Yingpu & Zeng, Kuo & Flamant, Gilles & Yang, Haiping & Liu, Nian & He, Xiao & Yang, Xinyi & Nzihou, Ange & Chen, Hanping, 2019. "Solar pyrolysis of cotton stalk in molten salt for bio-fuel production," Energy, Elsevier, vol. 179(C), pages 1124-1132.
    6. Avila-Marin, Antonio L. & Fernandez-Reche, Jesus & Gianella, Sandro & Ferrari, Luca & Sanchez-Señoran, Daniel, 2022. "Experimental study of innovative periodic cellular structures as air volumetric absorbers," Renewable Energy, Elsevier, vol. 184(C), pages 391-404.
    7. Li, Xian & Wei, Liping & Lim, Chia Wei & Chen, Jialing & Chu, Peng & Lipiński, Wojciech & Yan, Ning & Dai, Yanjun & Wang, Chi-Hwa, 2022. "Experimental and numerical study on thermal performance of an indirectly irradiated solar reactor with a clapboard-type internally circulating fluidized bed," Applied Energy, Elsevier, vol. 305(C).
    8. Avila-Marin, Antonio L. & Alvarez de Lara, Monica & Fernandez-Reche, Jesus, 2018. "Experimental results of gradual porosity volumetric air receivers with wire meshes," Renewable Energy, Elsevier, vol. 122(C), pages 339-353.
    9. Marco Milanese & Gianpiero Colangelo & Arturo de Risi, 2021. "Development of a High-Flux Solar Simulator for Experimental Testing of High-Temperature Applications," Energies, MDPI, vol. 14(11), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriel Zsembinszki & Aran Solé & Camila Barreneche & Cristina Prieto & A. Inés Fernández & Luisa F. Cabeza, 2018. "Review of Reactors with Potential Use in Thermochemical Energy Storage in Concentrated Solar Power Plants," Energies, MDPI, vol. 11(9), pages 1-23, September.
    2. Zhang, Huili & Benoit, Hadrien & Gauthier, Daniel & Degrève, Jan & Baeyens, Jan & López, Inmaculada Pérez & Hemati, Mehrdji & Flamant, Gilles, 2016. "Particle circulation loops in solar energy capture and storage: Gas–solid flow and heat transfer considerations," Applied Energy, Elsevier, vol. 161(C), pages 206-224.
    3. Zaversky, Fritz & Les, Iñigo & Sorbet, Patxi & Sánchez, Marcelino & Valentin, Benoît & Brau, Jean-Florian & Siros, Frédéric, 2020. "The challenge of solar powered combined cycles – Providing dispatchability and increasing efficiency by integrating the open volumetric air receiver technology," Energy, Elsevier, vol. 194(C).
    4. Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Rood, Mark, 2017. "Thermal energy storage systems for concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 82-100.
    5. Calderón, Alejandro & Palacios, Anabel & Barreneche, Camila & Segarra, Mercè & Prieto, Cristina & Rodriguez-Sanchez, Alfonso & Fernández, A. Inés, 2018. "High temperature systems using solid particles as TES and HTF material: A review," Applied Energy, Elsevier, vol. 213(C), pages 100-111.
    6. Haneklaus, Nils & Schröders, Sarah & Zheng, Yanhua & Allelein, Hans-Josef, 2017. "Economic evaluation of flameless phosphate rock calcination with concentrated solar power and high temperature reactors," Energy, Elsevier, vol. 140(P1), pages 1148-1157.
    7. Dan, Atasi & Barshilia, Harish C. & Chattopadhyay, Kamanio & Basu, Bikramjit, 2017. "Solar energy absorption mediated by surface plasma polaritons in spectrally selective dielectric-metal-dielectric coatings: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1050-1077.
    8. Alvarez Rivero, M. & Rodrigues, D. & Pinheiro, C.I.C. & Cardoso, J.P. & Mendes, L.F., 2022. "Solid–gas reactors driven by concentrated solar energy with potential application to calcium looping: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    9. José M. Cardemil & Allan R. Starke & Adriana Zurita & Carlos Mata‐Torres & Rodrigo Escobar, 2021. "Integration schemes for hybrid and polygeneration concentrated solar power plants," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(6), November.
    10. Miguel J. Prieto & Juan Á. Martínez & Rogelio Peón & Lourdes Á. Barcia & Fernando Nuño, 2017. "On the Convenience of Using Simulation Models to Optimize the Control Strategy of Molten-Salt Heat Storage Systems in Solar Thermal Power Plants," Energies, MDPI, vol. 10(7), pages 1-17, July.
    11. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    12. Fu, Qianmei & Ding, Jing & Lao, Jiewei & Wang, Weilong & Lu, Jianfeng, 2019. "Thermal-hydraulic performance of printed circuit heat exchanger with supercritical carbon dioxide airfoil fin passage and molten salt straight passage," Applied Energy, Elsevier, vol. 247(C), pages 594-604.
    13. Yang, Honglun & Wang, Qiliang & Huang, Xiaona & Li, Jing & Pei, Gang, 2018. "Performance study and comparative analysis of traditional and double-selective-coated parabolic trough receivers," Energy, Elsevier, vol. 145(C), pages 206-216.
    14. Li, Shenghui & Sun, Xiaojing & Liu, Linlin & Du, Jian, 2023. "A full process optimization of methanol production integrated with co-generation based on the co-gasification of biomass and coal," Energy, Elsevier, vol. 267(C).
    15. Yang, Song & Wang, Jun & Lund, Peter D. & Jiang, Chuan & Liu, Deli, 2018. "Assessing the impact of optical errors in a novel 2-stage dish concentrator using Monte-Carlo ray-tracing simulation," Renewable Energy, Elsevier, vol. 123(C), pages 603-615.
    16. Mostafavi Tehrani, S. Saeed & Taylor, Robert A., 2016. "Off-design simulation and performance of molten salt cavity receivers in solar tower plants under realistic operational modes and control strategies," Applied Energy, Elsevier, vol. 179(C), pages 698-715.
    17. Bai, Wengang & Li, Hongzhi & Zhang, Xuwei & Qiao, Yongqiang & Zhang, Chun & Gao, Wei & Yao, Mingyu, 2022. "Thermodynamic analysis of CO2–SF6 mixture working fluid supercritical Brayton cycle used for solar power plants," Energy, Elsevier, vol. 261(PB).
    18. Delise, T. & Tizzoni, A.C. & Menale, C. & Telling, M.T.F. & Bubbico, R. & Crescenzi, T. & Corsaro, N. & Sau, S. & Licoccia, S., 2020. "Technical and economic analysis of a CSP plant presenting a low freezing ternary mixture as storage and transfer fluid," Applied Energy, Elsevier, vol. 265(C).
    19. Hussain, C.M. Iftekhar & Norton, Brian & Duffy, Aidan, 2017. "Technological assessment of different solar-biomass systems for hybrid power generation in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1115-1129.
    20. Awan, Ahmed Bilal & Zubair, Muhammad & Chandra Mouli, Kotturu V.V., 2020. "Design, optimization and performance comparison of solar tower and photovoltaic power plants," Energy, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:77:y:2017:i:c:p:1385-1402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.