IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v65y2016icp283-294.html
   My bibliography  Save this article

Collaborative smart grids – A survey on trends

Author

Listed:
  • Camarinha-Matos, Luis M.

Abstract

Smart grids are the result of a dynamic co-evolution process that leverages the integration of new technological advances in the energy systems and information and communication technologies. This process is accompanied by changes in business models, organizational structures, roles, and operating practices. In this context, collaboration among multiple entities becomes a crucial element, justifying the term Collaborative Smart Grid. The purpose of this article is to systematically review recent literature with a view to identifying trends, opportunities, and challenges regarding the application of models, approaches, and tools from collaborative networks to the energy domain.

Suggested Citation

  • Camarinha-Matos, Luis M., 2016. "Collaborative smart grids – A survey on trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 283-294.
  • Handle: RePEc:eee:rensus:v:65:y:2016:i:c:p:283-294
    DOI: 10.1016/j.rser.2016.06.093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116303264
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.06.093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Belmonte, Silvina & Escalante, Karina Natalia & Franco, Judith, 2015. "Shaping changes through participatory processes: Local development and renewable energy in rural habitats," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 278-289.
    2. Gangale, Flavia & Mengolini, Anna & Onyeji, Ijeoma, 2013. "Consumer engagement: An insight from smart grid projects in Europe," Energy Policy, Elsevier, vol. 60(C), pages 621-628.
    3. Peter Morris & Laurie Buys & Desley Vine, 2014. "Moving from Outsider to Insider: Peer Status and Partnerships between Electricity Utilities and Residential Consumers," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-8, June.
    4. Siano, Pierluigi, 2014. "Demand response and smart grids—A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 461-478.
    5. Chunlin Li & Layuan Li, 2012. "Collaboration among mobile agents for efficient energy allocation in mobile grid," Information Systems Frontiers, Springer, vol. 14(3), pages 711-723, July.
    6. Labeodan, Timilehin & Aduda, Kennedy & Boxem, Gert & Zeiler, Wim, 2015. "On the application of multi-agent systems in buildings for improved building operations, performance and smart grid interaction – A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1405-1414.
    7. Boie, Inga & Fernandes, Camila & Frías, Pablo & Klobasa, Marian, 2014. "Efficient strategies for the integration of renewable energy into future energy infrastructures in Europe – An analysis based on transnational modeling and case studies for nine European regions," Energy Policy, Elsevier, vol. 67(C), pages 170-185.
    8. Giordano, Vincenzo & Fulli, Gianluca, 2012. "A business case for Smart Grid technologies: A systemic perspective," Energy Policy, Elsevier, vol. 40(C), pages 252-259.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hoarau, Quentin & Perez, Yannick, 2018. "Interactions between electric mobility and photovoltaic generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 510-522.
    2. Mahmud, Khizir & Town, Graham E. & Morsalin, Sayidul & Hossain, M.J., 2018. "Integration of electric vehicles and management in the internet of energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4179-4203.
    3. Ahl, A. & Yarime, M. & Goto, M. & Chopra, Shauhrat S. & Kumar, Nallapaneni Manoj. & Tanaka, K. & Sagawa, D., 2020. "Exploring blockchain for the energy transition: Opportunities and challenges based on a case study in Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    4. Dong, Bing & Li, Zhaoxuan & Taha, Ahmad & Gatsis, Nikolaos, 2018. "Occupancy-based buildings-to-grid integration framework for smart and connected communities," Applied Energy, Elsevier, vol. 219(C), pages 123-137.
    5. Hussain, I. & Ali, S.M. & Khan, B. & Ullah, Z. & Mehmood, C.A. & Jawad, M. & Farid, U. & Haider, A., 2019. "Stochastic Wind Energy Management Model within smart grid framework: A joint Bi-directional Service Level Agreement (SLA) between smart grid and Wind Energy District Prosumers," Renewable Energy, Elsevier, vol. 134(C), pages 1017-1033.
    6. Kolasa, Piotr & Janowski, Mirosław, 2017. "Study of possibilities to store energy virtually in a grid (VESS) with the use of smart metering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1513-1517.
    7. Specht, Jan Martin & Madlener, Reinhard, 2019. "Energy Supplier 2.0: A conceptual business model for energy suppliers aggregating flexible distributed assets and policy issues raised," Energy Policy, Elsevier, vol. 135(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ponce, Pedro & Polasko, Kenneth & Molina, Arturo, 2016. "End user perceptions toward smart grid technology: Acceptance, adoption, risks, and trust," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 587-598.
    2. Imke Lammers & Lea Diestelmeier, 2017. "Experimenting with Law and Governance for Decentralized Electricity Systems: Adjusting Regulation to Reality?," Sustainability, MDPI, vol. 9(2), pages 1-14, February.
    3. Niesten, Eva & Alkemade, Floortje, 2016. "How is value created and captured in smart grids? A review of the literature and an analysis of pilot projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 629-638.
    4. Moreno-Munoz, A. & Bellido-Outeirino, F.J. & Siano, P. & Gomez-Nieto, M.A., 2016. "Mobile social media for smart grids customer engagement: Emerging trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1611-1616.
    5. Guo, Peiyang & Li, Victor O.K. & Lam, Jacqueline C.K., 2017. "Smart demand response in China: Challenges and drivers," Energy Policy, Elsevier, vol. 107(C), pages 1-10.
    6. Kowalska-Pyzalska, Anna, 2018. "What makes consumers adopt to innovative energy services in the energy market? A review of incentives and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3570-3581.
    7. Lopes, Marta A.R. & Henggeler Antunes, Carlos & Janda, Kathryn B. & Peixoto, Paulo & Martins, Nelson, 2016. "The potential of energy behaviours in a smart(er) grid: Policy implications from a Portuguese exploratory study," Energy Policy, Elsevier, vol. 90(C), pages 233-245.
    8. Kris Kessels & Carolien Kraan & Ludwig Karg & Simone Maggiore & Pieter Valkering & Erik Laes, 2016. "Fostering Residential Demand Response through Dynamic Pricing Schemes: A Behavioural Review of Smart Grid Pilots in Europe," Sustainability, MDPI, vol. 8(9), pages 1-21, September.
    9. Whittle, Colin & Jones, Christopher R. & While, Aidan, 2020. "Empowering householders: Identifying predictors of intentions to use a home energy management system in the United Kingdom," Energy Policy, Elsevier, vol. 139(C).
    10. Nilsson, Anders & Lazarevic, David & Brandt, Nils & Kordas, Olga, 2018. "Household responsiveness to residential demand response strategies: Results and policy implications from a Swedish field study," Energy Policy, Elsevier, vol. 122(C), pages 273-286.
    11. Fischer, David & Madani, Hatef, 2017. "On heat pumps in smart grids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 342-357.
    12. Erdinc, Ozan, 2014. "Economic impacts of small-scale own generating and storage units, and electric vehicles under different demand response strategies for smart households," Applied Energy, Elsevier, vol. 126(C), pages 142-150.
    13. Villa-Arrieta, Manuel & Sumper, Andreas, 2018. "A model for an economic evaluation of energy systems using TRNSYS," Applied Energy, Elsevier, vol. 215(C), pages 765-777.
    14. Chaouachi, Aymen & Bompard, Ettore & Fulli, Gianluca & Masera, Marcelo & De Gennaro, Michele & Paffumi, Elena, 2016. "Assessment framework for EV and PV synergies in emerging distribution systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 719-728.
    15. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    16. Hu, Maomao & Xiao, Fu & Wang, Lingshi, 2017. "Investigation of demand response potentials of residential air conditioners in smart grids using grey-box room thermal model," Applied Energy, Elsevier, vol. 207(C), pages 324-335.
    17. Kowalska-Pyzalska, Anna & Maciejowska, Katarzyna & Suszczyński, Karol & Sznajd-Weron, Katarzyna & Weron, Rafał, 2014. "Turning green: Agent-based modeling of the adoption of dynamic electricity tariffs," Energy Policy, Elsevier, vol. 72(C), pages 164-174.
    18. Haidar, Ahmed M.A. & Muttaqi, Kashem & Sutanto, Danny, 2015. "Smart Grid and its future perspectives in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1375-1389.
    19. Xu, Xiaojing & Chen, Chien-fei, 2019. "Energy efficiency and energy justice for U.S. low-income households: An analysis of multifaceted challenges and potential," Energy Policy, Elsevier, vol. 128(C), pages 763-774.
    20. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:65:y:2016:i:c:p:283-294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.