IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v63y2016icp158-165.html
   My bibliography  Save this article

Driving electric vehicles at highway speeds: The effect of higher driving speeds on energy consumption and driving range for electric vehicles in Australia

Author

Listed:
  • Wager, Guido
  • Whale, Jonathan
  • Braunl, Thomas

Abstract

Electric vehicles (EVs) have the potential to operate emission free and thus overcome many environmental and health issues associated with cars run on fossil fuels. Recharging time and driving range are amongst the biggest hurdles for the mainstream acceptance and implementation of EV technology. Fast-DC charging significantly reduces the recharging time and can be used to make longer EV trips possible, e.g. on highways between cities. Although some EV and hybrid car studies have been conducted that address separately issues such as limited drivable ranges, charge stations, impact from auxiliary loads on vehicle energy consumption and emissions, there is currently limited research on the impact on drivable range from the combination of driving EVs at highway speeds, using auxiliary loads such as heating or air conditioning (AC), and reduced charge capacity from fast-DC charging and discharge safety margins. In this study we investigate these parameters and their impact on energy consumption and drivable range of EVs. Our results show a significantly reduced range under conditions relevant for highway driving and significant deviation from driving ranges published by EV manufacturers. The results and outcomes of this project are critical for the efficient design and implementation of so-called ‘Electric Highways’. To prevent stranded cars and a possible negative perception of EVs, drivers and charging infrastructure planners need be aware of how EV energy and recharging demands can significantly change under different loads and driving patterns.

Suggested Citation

  • Wager, Guido & Whale, Jonathan & Braunl, Thomas, 2016. "Driving electric vehicles at highway speeds: The effect of higher driving speeds on energy consumption and driving range for electric vehicles in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 158-165.
  • Handle: RePEc:eee:rensus:v:63:y:2016:i:c:p:158-165
    DOI: 10.1016/j.rser.2016.05.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116301721
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.05.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. González, L.G. & Siavichay, E. & Espinoza, J.L., 2019. "Impact of EV fast charging stations on the power distribution network of a Latin American intermediate city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 309-318.
    2. Sousa, Nuno & Almeida, Arminda & Coutinho-Rodrigues, João, 2020. "A multicriteria methodology for estimating consumer acceptance of alternative powertrain technologies," Transport Policy, Elsevier, vol. 85(C), pages 18-32.
    3. Rafał Różycki & Joanna Józefowska & Krzysztof Kurowski & Tomasz Lemański & Tomasz Pecyna & Marek Subocz & Grzegorz Waligóra, 2022. "A Quantum Approach to the Problem of Charging Electric Cars on a Motorway," Energies, MDPI, vol. 16(1), pages 1-20, December.
    4. Al-Wreikat, Yazan & Serrano, Clara & Sodré, José Ricardo, 2021. "Driving behaviour and trip condition effects on the energy consumption of an electric vehicle under real-world driving," Applied Energy, Elsevier, vol. 297(C).
    5. Masiero, Gilmar & Ogasavara, Mario Henrique & Jussani, Ailton Conde & Risso, Marcelo Luiz, 2017. "The global value chain of electric vehicles: A review of the Japanese, South Korean and Brazilian cases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 290-296.
    6. Roberto Ruggieri & Marco Ruggeri & Giuliana Vinci & Stefano Poponi, 2021. "Electric Mobility in a Smart City: European Overview," Energies, MDPI, vol. 14(2), pages 1-29, January.
    7. Hariharan, C. & Gunadevan, D. & Arun Prakash, S. & Latha, K. & Antony Aroul Raj, V. & Velraj, R., 2022. "Simulation of battery energy consumption in an electric car with traction and HVAC model for a given source and destination for reducing the range anxiety of the driver," Energy, Elsevier, vol. 249(C).
    8. Bi, Jun & Wang, Yongxing & Sai, Qiuyue & Ding, Cong, 2019. "Estimating remaining driving range of battery electric vehicles based on real-world data: A case study of Beijing, China," Energy, Elsevier, vol. 169(C), pages 833-843.
    9. Yuan, Xinmei & Zhang, Chuanpu & Hong, Guokai & Huang, Xueqi & Li, Lili, 2017. "Method for evaluating the real-world driving energy consumptions of electric vehicles," Energy, Elsevier, vol. 141(C), pages 1955-1968.
    10. Zhang, Jin & Wang, Zhenpo & Liu, Peng & Zhang, Zhaosheng, 2020. "Energy consumption analysis and prediction of electric vehicles based on real-world driving data," Applied Energy, Elsevier, vol. 275(C).
    11. Haber, Marc & Azaïs, Philippe & Genies, Sylvie & Raccurt, Olivier, 2023. "Stress factor identification and Risk Probabilistic Number (RPN) analysis of Li-ion batteries based on worldwide electric vehicle usage," Applied Energy, Elsevier, vol. 343(C).
    12. Wen, Jianping & Zhao, Dan & Zhang, Chuanwei, 2020. "An overview of electricity powered vehicles: Lithium-ion battery energy storage density and energy conversion efficiency," Renewable Energy, Elsevier, vol. 162(C), pages 1629-1648.
    13. Al-Wreikat, Yazan & Serrano, Clara & Sodré, José Ricardo, 2022. "Effects of ambient temperature and trip characteristics on the energy consumption of an electric vehicle," Energy, Elsevier, vol. 238(PC).
    14. Gönül, Ömer & Duman, A. Can & Güler, Önder, 2021. "Electric vehicles and charging infrastructure in Turkey: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    15. Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:63:y:2016:i:c:p:158-165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.