IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i10p4259-d1651419.html
   My bibliography  Save this article

Understanding the Determinants of Electric Vehicle Range: A Multi-Dimensional Survey

Author

Listed:
  • Runze Mao

    (Ocean College, Jiangsu University of Science and Technology, Zhenjiang 212002, China)

  • Weiqian Xu

    (Ocean College, Jiangsu University of Science and Technology, Zhenjiang 212002, China)

  • Yutong Qian

    (Ocean College, Jiangsu University of Science and Technology, Zhenjiang 212002, China)

  • Xiaorong Li

    (Ocean College, Jiangsu University of Science and Technology, Zhenjiang 212002, China)

  • Yuanjiang Li

    (Ocean College, Jiangsu University of Science and Technology, Zhenjiang 212002, China)

  • Guoyuan Li

    (Department of Ocean Operations and Civil Engineering, Norwegian University of Science and Technology, 6025 Alesund, Norway)

  • Houxiang Zhang

    (Department of Ocean Operations and Civil Engineering, Norwegian University of Science and Technology, 6025 Alesund, Norway)

Abstract

Electric vehicles (EVs) play a critical role in the transition to sustainable transportation. Despite significant advancements in technology, EVs continue to face major challenges, particularly in terms of limited range, high costs, and insufficient charging infrastructure. This paper presents a comprehensive review that systematically categorizes the multifaceted factors influencing EV range into technical, environmental, user-related, economic, policy, and cultural dimensions. The aim is to offer a holistic view of how these elements interact to shape EV performance, adoption, and usage. Notably, advancements in battery capacity, charging time, vehicle weight, and aerodynamics are identified as key factors that significantly enhance EV range. Environmental factors such as temperature and terrain are shown to drastically impact energy consumption, with cold climates leading to up to a 50% reduction in range. Furthermore, user behaviors, driving patterns, and economic factors like battery costs, charging infrastructure availability, and electricity prices play a crucial role in determining EV efficiency. This review shows the importance of supportive policies, societal attitudes, and infrastructural developments in promoting the widespread adoption of EVs, making it an innovative and timely contribution to the field.

Suggested Citation

  • Runze Mao & Weiqian Xu & Yutong Qian & Xiaorong Li & Yuanjiang Li & Guoyuan Li & Houxiang Zhang, 2025. "Understanding the Determinants of Electric Vehicle Range: A Multi-Dimensional Survey," Sustainability, MDPI, vol. 17(10), pages 1-26, May.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4259-:d:1651419
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/10/4259/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/10/4259/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bogdan Ovidiu Varga & Arsen Sagoian & Florin Mariasiu, 2019. "Prediction of Electric Vehicle Range: A Comprehensive Review of Current Issues and Challenges," Energies, MDPI, vol. 12(5), pages 1-19, March.
    2. Talat Genc & Pietro De Giovanni, 2021. "Dynamic pricing and green investments under conscious, emotional, and rational consumers," Working Papers 2101, University of Guelph, Department of Economics and Finance.
    3. Capasso, Clemente & Veneri, Ottorino, 2014. "Experimental analysis on the performance of lithium based batteries for road full electric and hybrid vehicles," Applied Energy, Elsevier, vol. 136(C), pages 921-930.
    4. Liu, Kai & Wang, Jiangbo & Yamamoto, Toshiyuki & Morikawa, Takayuki, 2018. "Exploring the interactive effects of ambient temperature and vehicle auxiliary loads on electric vehicle energy consumption," Applied Energy, Elsevier, vol. 227(C), pages 324-331.
    5. Al-Wreikat, Yazan & Serrano, Clara & Sodré, José Ricardo, 2022. "Effects of ambient temperature and trip characteristics on the energy consumption of an electric vehicle," Energy, Elsevier, vol. 238(PC).
    6. Wager, Guido & Whale, Jonathan & Braunl, Thomas, 2016. "Driving electric vehicles at highway speeds: The effect of higher driving speeds on energy consumption and driving range for electric vehicles in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 158-165.
    7. Caulfield, Brian & Furszyfer, Dylan & Stefaniec, Agnieszka & Foley, Aoife, 2022. "Measuring the equity impacts of government subsidies for electric vehicles," Energy, Elsevier, vol. 248(C).
    8. Lorenzo Nicoletti & Andrea Romano & Adrian König & Peter Köhler & Maximilian Heinrich & Markus Lienkamp, 2021. "An Estimation of the Lightweight Potential of Battery Electric Vehicles," Energies, MDPI, vol. 14(15), pages 1-29, July.
    9. Yang, Xiong & Zhuge, Chengxiang & Shao, Chunfu & Huang, Yuantan & Hayse Chiwing G. Tang, Justin & Sun, Mingdong & Wang, Pinxi & Wang, Shiqi, 2022. "Characterizing mobility patterns of private electric vehicle users with trajectory data," Applied Energy, Elsevier, vol. 321(C).
    10. Shuping Wu & Zan Yang, 2020. "Availability of Public Electric Vehicle Charging Pile and Development of Electric Vehicle: Evidence from China," Sustainability, MDPI, vol. 12(16), pages 1-14, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Xilei & Fu, Jianqin, 2024. "Many-objective optimization of BEV design parameters based on gradient boosting decision tree models and the NSGA-III algorithm considering the ambient temperature," Energy, Elsevier, vol. 288(C).
    2. Andrea Di Martino & Seyed Mahdi Miraftabzadeh & Michela Longo, 2022. "Strategies for the Modelisation of Electric Vehicle Energy Consumption: A Review," Energies, MDPI, vol. 15(21), pages 1-20, October.
    3. Zhang, Xinfang & Zhang, Zhe & Liu, Yang & Xu, Zhigang & Qu, Xiaobo, 2024. "A review of machine learning approaches for electric vehicle energy consumption modelling in urban transportation," Renewable Energy, Elsevier, vol. 234(C).
    4. Steinbach, Sarah A. & Blaschke, Maximilian J., 2024. "Enabling electric mobility: Can photovoltaic and home battery systems significantly reduce grid reinforcement costs?," Applied Energy, Elsevier, vol. 375(C).
    5. Zhang, Jin & Wang, Zhenpo & Liu, Peng & Zhang, Zhaosheng, 2020. "Energy consumption analysis and prediction of electric vehicles based on real-world driving data," Applied Energy, Elsevier, vol. 275(C).
    6. Haber, Marc & Azaïs, Philippe & Genies, Sylvie & Raccurt, Olivier, 2023. "Stress factor identification and Risk Probabilistic Number (RPN) analysis of Li-ion batteries based on worldwide electric vehicle usage," Applied Energy, Elsevier, vol. 343(C).
    7. Sarah A. Steinbach & Maximilian J. Blaschke, 2024. "How grid reinforcement costs differ by the income of electric vehicle users," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Sun, Xilei & Fu, Jianqin, 2024. "Experiment investigation for interconnected effects of driving cycle and ambient temperature on bidirectional energy flows in an electric sport utility vehicle," Energy, Elsevier, vol. 300(C).
    9. Jiang, Junyu & Yu, Yuanbin & Min, Haitao & Cao, Qiming & Sun, Weiyi & Zhang, Zhaopu & Luo, Chunqi, 2023. "Trip-level energy consumption prediction model for electric bus combining Markov-based speed profile generation and Gaussian processing regression," Energy, Elsevier, vol. 263(PD).
    10. Lee, Gwangryeol & Song, Jingeun & Han, Jungwon & Lim, Yunsung & Park, Suhan, 2023. "Study on energy consumption characteristics of passenger electric vehicle according to the regenerative braking stages during real-world driving conditions," Energy, Elsevier, vol. 283(C).
    11. Huang, Xiaohui & Huang, Qi & Cao, Huajun & Wang, Qianyue & Yan, Wanbin & Cao, Le, 2023. "Battery capacity selection for electric construction machinery considering variable operating conditions and multiple interest claims," Energy, Elsevier, vol. 275(C).
    12. Al-Wreikat, Yazan & Serrano, Clara & Sodré, José Ricardo, 2021. "Driving behaviour and trip condition effects on the energy consumption of an electric vehicle under real-world driving," Applied Energy, Elsevier, vol. 297(C).
    13. Al-Wreikat, Yazan & Serrano, Clara & Sodré, José Ricardo, 2022. "Effects of ambient temperature and trip characteristics on the energy consumption of an electric vehicle," Energy, Elsevier, vol. 238(PC).
    14. Jia, Zhenyu & Yin, Jiawei & Cao, Zeping & Wu, Lin & Wei, Ning & Zhang, Yanjie & Jiang, Zhiwen & Guo, Dongping & Zhang, Qijun & Mao, Hongjun, 2025. "Regional vehicle energy consumption evaluation framework to quantify the benefits of vehicle electrification in plateau city: A case study of Xining, China," Applied Energy, Elsevier, vol. 377(PC).
    15. Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.
    16. Zhang, Zhaosheng & Wang, Shuai & Ye, Baolin & Ma, Yucheng, 2025. "A feature prediction-based method for energy consumption prediction of electric buses," Energy, Elsevier, vol. 314(C).
    17. Hariharan, C. & Gunadevan, D. & Arun Prakash, S. & Latha, K. & Antony Aroul Raj, V. & Velraj, R., 2022. "Simulation of battery energy consumption in an electric car with traction and HVAC model for a given source and destination for reducing the range anxiety of the driver," Energy, Elsevier, vol. 249(C).
    18. Themistoklis Stamadianos & Nikolaos A. Kyriakakis & Magdalene Marinaki & Yannis Marinakis, 2023. "Routing Problems with Electric and Autonomous Vehicles: Review and Potential for Future Research," SN Operations Research Forum, Springer, vol. 4(2), pages 1-34, June.
    19. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    20. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4259-:d:1651419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.