IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v57y2016icp1066-1076.html
   My bibliography  Save this article

Low-carbon neighborhood planning technology and indicator system

Author

Listed:
  • Wang, Xiaoming
  • Zhao, Guochao
  • He, Chenchen
  • Wang, Xu
  • Peng, Wenjun

Abstract

Climate change has become a global issue influencing human survival and development while urban carbon emission is the main factor. As a fundamental building block of the city, neighborhood is not only the basic space to create a truly sustainable community but also the starting point for the use of low-carbon ideas and technologies to address climate change and promote the construction of a low-carbon city. Considering the significance of neighborhood planning on reducing carbon emissions, we proposed low-carbon neighborhood planning technologies from six aspects: layout planning, traffic planning, architecture planning and design, environment planning, municipal engineering planning and construction management. Moreover, we built an indicator system of low-carbon neighborhood based on these technologies from the perspective of “carbon source control” and “carbon sinks expansion” and used Analytic Network Process (ANP) to analyze the internal feedback and obtain the priorities. The system could be used to indicate low-carbon degree and provide measures for improvements. Furthermore, we carried out a case study using the proposed method for a neighborhood in Shandong province, China. Our practice has proved that the system could promote sustainable and low-carbon development of urban neighborhood and provide the government an effective tool.

Suggested Citation

  • Wang, Xiaoming & Zhao, Guochao & He, Chenchen & Wang, Xu & Peng, Wenjun, 2016. "Low-carbon neighborhood planning technology and indicator system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1066-1076.
  • Handle: RePEc:eee:rensus:v:57:y:2016:i:c:p:1066-1076
    DOI: 10.1016/j.rser.2015.12.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115014598
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.12.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A.M. Fogheri, 2015. "Energy Efficiency in Public Buildings," Rivista economica del Mezzogiorno, Società editrice il Mulino, issue 3-4, pages 763-784.
    2. Tan Yigitcanlar & Md. Kamruzzaman & Suharto Teriman, 2015. "Neighborhood Sustainability Assessment: Evaluating Residential Development Sustainability in a Developing Country Context," Sustainability, MDPI, vol. 7(3), pages 1-33, March.
    3. Jiang, Ping & Chen, Yihui & Xu, Bin & Dong, Wenbo & Kennedy, Erin, 2013. "Building low carbon communities in China: The role of individual’s behaviour change and engagement," Energy Policy, Elsevier, vol. 60(C), pages 611-620.
    4. Ayyoob Sharifi & Akito Murayama, 2015. "Viability of using global standards for neighbourhood sustainability assessment: insights from a comparative case study," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 58(1), pages 1-23, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Garfield Wayne Hunter & Gideon Sagoe & Daniele Vettorato & Ding Jiayu, 2019. "Sustainability of Low Carbon City Initiatives in China: A Comprehensive Literature Review," Sustainability, MDPI, vol. 11(16), pages 1-37, August.
    2. Wang, Y. & Mauree, D. & Sun, Q. & Lin, H. & Scartezzini, J.L. & Wennersten, R., 2020. "A review of approaches to low-carbon transition of high-rise residential buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    3. Cao, Xinchun & Zeng, Wen & Wu, Mengyang & Guo, Xiangping & Wang, Weiguang, 2020. "Hybrid analytical framework for regional agricultural water resource utilization and efficiency evaluation," Agricultural Water Management, Elsevier, vol. 231(C).
    4. Guangdong Wu & Guofeng Qiang & Jian Zuo & Xianbo Zhao & Ruidong Chang, 2018. "What are the Key Indicators of Mega Sustainable Construction Projects? —A Stakeholder-Network Perspective," Sustainability, MDPI, vol. 10(8), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiangang Shi & Kaifeng Duan & Guangdong Wu & Hongyun Si & Rui Zhang, 2022. "Sustainability at the community level: A bibliometric journey around a set of sustainability‐related terms," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(1), pages 256-274, February.
    2. Qi Zhang & Esther Hiu-Kwan Yung & Edwin Hon-Wan Chan, 2021. "Meshing Sustainability with Satisfaction: An Investigation of Residents’ Perceptions in Three Different Neighbourhoods in Chengdu, China," Land, MDPI, vol. 10(11), pages 1-32, November.
    3. Ferrari, S. & Zoghi, M. & Blázquez, T. & Dall’O’, G., 2022. "Towards worldwide application of neighborhood sustainability assessments: A systematic review on realized case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Tan Yigitcanlar & Md. Kamruzzaman, 2015. "Planning, Development and Management of Sustainable Cities: A Commentary from the Guest Editors," Sustainability, MDPI, vol. 7(11), pages 1-12, November.
    5. Yu Dong & Tongyu Qin & Siyuan Zhou & Lu Huang & Rui Bo & Haibo Guo & Xunzhi Yin, 2020. "Comparative Whole Building Life Cycle Assessment of Energy Saving and Carbon Reduction Performance of Reinforced Concrete and Timber Stadiums—A Case Study in China," Sustainability, MDPI, vol. 12(4), pages 1-24, February.
    6. Garfield Wayne Hunter & Gideon Sagoe & Daniele Vettorato & Ding Jiayu, 2019. "Sustainability of Low Carbon City Initiatives in China: A Comprehensive Literature Review," Sustainability, MDPI, vol. 11(16), pages 1-37, August.
    7. Leurent, Martin & Jasserand, Frédéric & Locatelli, Giorgio & Palm, Jenny & Rämä, Miika & Trianni, Andrea, 2017. "Driving forces and obstacles to nuclear cogeneration in Europe: Lessons learnt from Finland," Energy Policy, Elsevier, vol. 107(C), pages 138-150.
    8. Yu, Jinghua & Ye, Hong & Xu, Xinhua & Huang, Junchao & Liu, Yunxi & Wang, Jinbo, 2018. "Experimental study on the thermal performance of a hollow block ventilation wall," Renewable Energy, Elsevier, vol. 122(C), pages 619-631.
    9. Wang, Y. & Mauree, D. & Sun, Q. & Lin, H. & Scartezzini, J.L. & Wennersten, R., 2020. "A review of approaches to low-carbon transition of high-rise residential buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    10. Tong, Zheming & Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard B., 2016. "Energy saving potential of natural ventilation in China: The impact of ambient air pollution," Applied Energy, Elsevier, vol. 179(C), pages 660-668.
    11. Qi-Gan Shao & James J. H. Liou & Sung-Shun Weng & Yen-Ching Chuang, 2018. "Improving the Green Building Evaluation System in China Based on the DANP Method," Sustainability, MDPI, vol. 10(4), pages 1-20, April.
    12. Xuejing Zheng & Boxiao Xu & Shijun You & Huan Zhang & Yaran Wang & Leizhai Sun, 2020. "Energy Consumption and CO 2 Emissions of Coach Stations in China," Energies, MDPI, vol. 13(14), pages 1-22, July.
    13. Alhamwi, Alaa & Medjroubi, Wided & Vogt, Thomas & Agert, Carsten, 2018. "Modelling urban energy requirements using open source data and models," Applied Energy, Elsevier, vol. 231(C), pages 1100-1108.
    14. Bai, Lujian & Wang, Shusheng, 2019. "Definition of new thermal climate zones for building energy efficiency response to the climate change during the past decades in China," Energy, Elsevier, vol. 170(C), pages 709-719.
    15. Liu, Jia & Chen, Xi & Yang, Hongxing & Li, Yutong, 2020. "Energy storage and management system design optimization for a photovoltaic integrated low-energy building," Energy, Elsevier, vol. 190(C).
    16. Kampanad Bhaktikul & Sayam Aroonsrimorakot & Meena Laiphrakpam & Warit Paisantanakij, 2021. "Toward a low-carbon tourism for sustainable development: a study based on a royal project for highland community development in Chiang Rai, Thailand," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10743-10762, July.
    17. Li, Honglian & Huang, Jin & Hu, Yao & Wang, Shangyu & Liu, Jing & Yang, Liu, 2021. "A new TMY generation method based on the entropy-based TOPSIS theory for different climatic zones in China," Energy, Elsevier, vol. 231(C).
    18. Yu, Jinghua & Leng, Kangxin & Ye, Hong & Xu, Xinhua & Luo, Yongqiang & Wang, Jinbo & Yang, Xie & Yang, Qingchen & Gang, Wenjie, 2020. "Study on thermal insulation characteristics and optimized design of pipe-embedded ventilation roof with outer-layer shape-stabilized PCM in different climate zones," Renewable Energy, Elsevier, vol. 147(P1), pages 1609-1622.
    19. Melita Rozman Cafuta, 2015. "Open Space Evaluation Methodology and Three Dimensional Evaluation Model as a Base for Sustainable Development Tracking," Sustainability, MDPI, vol. 7(10), pages 1-23, October.
    20. Yijun Fu & Shicong Zhang & Xi Chen & Wei Xu, 2021. "Sino-American Building Energy Standards Comparison and Recommendations towards Zero Energy Building," Sustainability, MDPI, vol. 13(18), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:57:y:2016:i:c:p:1066-1076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.