IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v51y2015icp1023-1037.html
   My bibliography  Save this article

A novel approach to capture the maximum power from variable speed wind turbines using PI controller, RBF neural network and GSA evolutionary algorithm

Author

Listed:
  • Assareh, Ehsanolah
  • Biglari, Mojtaba

Abstract

This paper presents a hybrid method for generator torque control in wind turbines. The generator torque control is usually used in lower wind speeds in order to capture the maximum power. In the proposed method, the wind turbine generator torque is regulated using a proportional and integral (PI) controller. In order to tune the PI gains, a radial basis function (RBF) neural network is used. The optimal dataset to train this neural network is provided by the Gravitational Search Algorithm (GSA). A 5MW wind turbine model based on FAST (Fatigue, Aero-dynamics, Structures and Turbulence) software code developed at the US National Renewable Energy Laboratory (NREL) is used to simulate and verify the results. The simulation results show that the proposed method has a good performance.

Suggested Citation

  • Assareh, Ehsanolah & Biglari, Mojtaba, 2015. "A novel approach to capture the maximum power from variable speed wind turbines using PI controller, RBF neural network and GSA evolutionary algorithm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1023-1037.
  • Handle: RePEc:eee:rensus:v:51:y:2015:i:c:p:1023-1037
    DOI: 10.1016/j.rser.2015.07.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115006814
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jena, Debashisha & Rajendran, Saravanakumar, 2015. "A review of estimation of effective wind speed based control of wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1046-1062.
    2. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    3. Oh, Ki-Yong & Park, Joon-Young & Lee, Jun-Shin & Lee, JaeKyung, 2015. "Implementation of a torque and a collective pitch controller in a wind turbine simulator to characterize the dynamics at three control regions," Renewable Energy, Elsevier, vol. 79(C), pages 150-160.
    4. Mohamed, Amal Z. & Eskander, Mona N. & Ghali, Fadia A., 2001. "Fuzzy logic control based maximum power tracking of a wind energy system," Renewable Energy, Elsevier, vol. 23(2), pages 235-245.
    5. Mostafaeipour, Ali, 2010. "Feasibility study of offshore wind turbine installation in Iran compared with the world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1722-1743, September.
    6. Kortabarria, Iñigo & Andreu, Jon & Martínez de Alegría, Iñigo & Jiménez, Jaime & Gárate, José Ignacio & Robles, Eider, 2014. "A novel adaptative maximum power point tracking algorithm for small wind turbines," Renewable Energy, Elsevier, vol. 63(C), pages 785-796.
    7. Chehouri, Adam & Younes, Rafic & Ilinca, Adrian & Perron, Jean, 2015. "Review of performance optimization techniques applied to wind turbines," Applied Energy, Elsevier, vol. 142(C), pages 361-388.
    8. Hassan, H.M. & ElShafei, A.L. & Farag, W.A. & Saad, M.S., 2012. "A robust LMI-based pitch controller for large wind turbines," Renewable Energy, Elsevier, vol. 44(C), pages 63-71.
    9. Mérida, Jován & Aguilar, Luis T. & Dávila, Jorge, 2014. "Analysis and synthesis of sliding mode control for large scale variable speed wind turbine for power optimization," Renewable Energy, Elsevier, vol. 71(C), pages 715-728.
    10. Belmokhtar, K. & Doumbia, M.L. & Agbossou, K., 2014. "Novel fuzzy logic based sensorless maximum power point tracking strategy for wind turbine systems driven DFIG (doubly-fed induction generator)," Energy, Elsevier, vol. 76(C), pages 679-693.
    11. Mostafaeipour, Ali, 2010. "Feasibility study of harnessing wind energy for turbine installation in province of Yazd in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 93-111, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tiwari, Ramji & Babu, N. Ramesh, 2016. "Recent developments of control strategies for wind energy conversion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 268-285.
    2. Sun, Peng & Li, Jian & Wang, Caisheng & Lei, Xiao, 2016. "A generalized model for wind turbine anomaly identification based on SCADA data," Applied Energy, Elsevier, vol. 168(C), pages 550-567.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:51:y:2015:i:c:p:1023-1037. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.