IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v43y2015icp388-402.html
   My bibliography  Save this article

Amorphous silicon thin-film: Behaviour of light-induced degradation

Author

Listed:
  • Hussin, M.Z.
  • Shaari, S.
  • Omar, A.M.
  • Zain, Z.M.

Abstract

This paper aims to investigate and emphasize the importance of the grid-connected PV system regarding with the complex nature of thin-film PV technology behaviours. The investigation was critically reviewed the literature on the potential problems associated with the responses of metastable behaviour and developed a new technique in determining the stabilization period under outdoor exposure. According to the literature survey, the importance issues such as the performance and reliability of the thin-film PV technology using grid-connected systems have fairly good performance, although the amount rate as well as process of stabilization period of light-induced degradation (LID) generally depended on the type of thin-film PV technology chosen. This study will lead to the identification of light-induced degradation mechanisms by viewing and summarizing the potential impact on this behaviour, which makes it difficult to obtain reliable and robust for PV system applications.

Suggested Citation

  • Hussin, M.Z. & Shaari, S. & Omar, A.M. & Zain, Z.M., 2015. "Amorphous silicon thin-film: Behaviour of light-induced degradation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 388-402.
  • Handle: RePEc:eee:rensus:v:43:y:2015:i:c:p:388-402
    DOI: 10.1016/j.rser.2014.10.093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114009186
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.10.093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Makrides, George & Zinsser, Bastian & Phinikarides, Alexander & Schubert, Markus & Georghiou, George E., 2012. "Temperature and thermal annealing effects on different photovoltaic technologies," Renewable Energy, Elsevier, vol. 43(C), pages 407-417.
    2. Meyer, E.L & van Dyk, E.E, 2003. "Characterization of degradation in thin-film photovoltaic module performance parameters," Renewable Energy, Elsevier, vol. 28(9), pages 1455-1469.
    3. Lund, C.P & Luczak, K & Pryor, T & Cornish, J.C.L & Jennings, P.J & Knipe, P & Ahjum, F, 2001. "Field and laboratory studies of the stability of amorphous silicon solar cells and modules," Renewable Energy, Elsevier, vol. 22(1), pages 287-294.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mateo, C. & Hernández-Fenollosa, M.A. & Montero, Á. & Seguí-Chilet, S., 2018. "Analysis of initial stabilization of cell efficiency in amorphous silicon photovoltaic modules under real outdoor conditions," Renewable Energy, Elsevier, vol. 120(C), pages 114-125.
    2. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Topologies for large scale photovoltaic power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 309-319.
    3. Savvakis, Nikolaos & Tsoutsos, Theocharis, 2015. "Performance assessment of a thin film photovoltaic system under actual Mediterranean climate conditions in the island of Crete," Energy, Elsevier, vol. 90(P2), pages 1435-1455.
    4. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    5. Hussin, M.Z. & Omar, A.M. & Shaari, S. & Sin, N.D. Md, 2017. "Review of state-of-the-art: Inverter-to-array power ratio for thin – Film sizing technique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 265-277.
    6. Rawat, Rahul & Singh, Ramayan & Sastry, O.S. & Kaushik, S.C., 2017. "Performance evaluation of micromorph based thin film photovoltaic modules in real operating conditions of composite climate," Energy, Elsevier, vol. 120(C), pages 537-548.
    7. Fernández-Solas, Álvaro & Micheli, Leonardo & Almonacid, Florencia & Fernández, Eduardo F., 2021. "Optical degradation impact on the spectral performance of photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    8. Li, Qingxiang & Zanelli, Alessandra, 2021. "A review on fabrication and applications of textile envelope integrated flexible photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    9. Shubbak, Mahmood H., 2019. "Advances in solar photovoltaics: Technology review and patent trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    10. Mateo, C. & Hernández-Fenollosa, M.A. & Montero, Á. & Seguí-Chilet, S., 2022. "Ageing and seasonal effects on amorphous silicon photovoltaic modules in a Mediterranean climate," Renewable Energy, Elsevier, vol. 186(C), pages 74-88.
    11. Liao, Wei & Xu, Shen, 2015. "Energy performance comparison among see-through amorphous-silicon PV (photovoltaic) glazings and traditional glazings under different architectural conditions in China," Energy, Elsevier, vol. 83(C), pages 267-275.
    12. Kichou, Sofiane & Silvestre, Santiago & Nofuentes, Gustavo & Torres-Ramírez, Miguel & Chouder, Aissa & Guasch, Daniel, 2016. "Characterization of degradation and evaluation of model parameters of amorphous silicon photovoltaic modules under outdoor long term exposure," Energy, Elsevier, vol. 96(C), pages 231-241.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharma, Vikrant & Chandel, S.S., 2013. "Performance and degradation analysis for long term reliability of solar photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 753-767.
    2. Mateo, C. & Hernández-Fenollosa, M.A. & Montero, Á. & Seguí-Chilet, S., 2018. "Analysis of initial stabilization of cell efficiency in amorphous silicon photovoltaic modules under real outdoor conditions," Renewable Energy, Elsevier, vol. 120(C), pages 114-125.
    3. Mateo, C. & Hernández-Fenollosa, M.A. & Montero, Á. & Seguí-Chilet, S., 2022. "Ageing and seasonal effects on amorphous silicon photovoltaic modules in a Mediterranean climate," Renewable Energy, Elsevier, vol. 186(C), pages 74-88.
    4. Rehman, Shafiqur & El-Amin, Ibrahim, 2012. "Performance evaluation of an off-grid photovoltaic system in Saudi Arabia," Energy, Elsevier, vol. 46(1), pages 451-458.
    5. Abdin, Z. & Alim, M.A. & Saidur, R. & Islam, M.R. & Rashmi, W. & Mekhilef, S. & Wadi, A., 2013. "Solar energy harvesting with the application of nanotechnology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 837-852.
    6. Chikh, Madjid & Berkane, Smain & Mahrane, Achour & Sellami, Rabah & Yassaa, Noureddine, 2021. "Performance assessment of a 400 kWp multi- technology photovoltaic grid-connected pilot plant in arid region of Algeria," Renewable Energy, Elsevier, vol. 172(C), pages 488-501.
    7. Abdallah, Amir & Martinez, Diego & Figgis, Benjamin & El Daif, Ounsi, 2016. "Performance of Silicon Heterojunction Photovoltaic modules in Qatar climatic conditions," Renewable Energy, Elsevier, vol. 97(C), pages 860-865.
    8. Tyagi, V.V. & Rahim, Nurul A.A. & Rahim, N.A. & Selvaraj, Jeyraj A./L., 2013. "Progress in solar PV technology: Research and achievement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 443-461.
    9. Ren, Xiao & Li, Jing & Hu, Mingke & Pei, Gang & Jiao, Dongsheng & Zhao, Xudong & Ji, Jie, 2019. "Feasibility of an innovative amorphous silicon photovoltaic/thermal system for medium temperature applications," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    10. Rozario, Joseph & Pearce, Joshua M., 2015. "Optimization of annealing cycles for electric output in outdoor conditions for amorphous silicon photovoltaic–thermal systems," Applied Energy, Elsevier, vol. 148(C), pages 134-141.
    11. Adar, Mustapha & Najih, Youssef & Gouskir, Mohamed & Chebak, Ahmed & Mabrouki, Mustapha & Bennouna, Amin, 2020. "Three PV plants performance analysis using the principal component analysis method," Energy, Elsevier, vol. 207(C).
    12. Kichou, Sofiane & Silvestre, Santiago & Nofuentes, Gustavo & Torres-Ramírez, Miguel & Chouder, Aissa & Guasch, Daniel, 2016. "Characterization of degradation and evaluation of model parameters of amorphous silicon photovoltaic modules under outdoor long term exposure," Energy, Elsevier, vol. 96(C), pages 231-241.
    13. Sharma, Vikrant & Kumar, Arun & Sastry, O.S. & Chandel, S.S., 2013. "Performance assessment of different solar photovoltaic technologies under similar outdoor conditions," Energy, Elsevier, vol. 58(C), pages 511-518.
    14. Midtgard, Ole-Morten & Sætre, Tor Oskar & Yordanov, Georgi & Imenes, Anne Gerd & Nge, Chee Lim, 2010. "A qualitative examination of performance and energy yield of photovoltaic modules in southern Norway," Renewable Energy, Elsevier, vol. 35(6), pages 1266-1274.
    15. Elibol, Erdem & Özmen, Özge Tüzün & Tutkun, Nedim & Köysal, Oğuz, 2017. "Outdoor performance analysis of different PV panel types," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 651-661.
    16. Shubbak, Mahmood H., 2019. "Advances in solar photovoltaics: Technology review and patent trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    17. van Dyk, E.E. & Meyer, E.L., 2004. "Analysis of the effect of parasitic resistances on the performance of photovoltaic modules," Renewable Energy, Elsevier, vol. 29(3), pages 333-344.
    18. Siddiqui, Rahnuma & Kumar, Rajesh & Jha, Gopal Kumar & Gowri, Ganesh & Morampudi, Manoj & Rajput, Pragati & Lata, Sneh & Agariya, Swati & Dubey, Bharat & Nanda, Gayatri & Raghava, Sykam Sahan, 2016. "Comparison of different technologies for solar PV (Photovoltaic) outdoor performance using indoor accelerated aging tests for long term reliability," Energy, Elsevier, vol. 107(C), pages 550-561.
    19. Fayaz, H. & Rahim, N.A. & Hasanuzzaman, M. & Nasrin, R. & Rivai, A., 2019. "Numerical and experimental investigation of the effect of operating conditions on performance of PVT and PVT-PCM," Renewable Energy, Elsevier, vol. 143(C), pages 827-841.
    20. Nasrin, R. & Hasanuzzaman, M. & Rahim, N.A., 2018. "Effect of high irradiation and cooling on power, energy and performance of a PVT system," Renewable Energy, Elsevier, vol. 116(PA), pages 552-569.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:43:y:2015:i:c:p:388-402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.