IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v218y2025ics1364032125004927.html
   My bibliography  Save this article

A new transportation energy review: methanol catalytic synthesis from CO2 green hydrogenation

Author

Listed:
  • Zhang, Peng
  • Chen, Qi
  • Chen, Hao
  • Geng, Limin
  • Wu, Han
  • Chen, Zhanming
  • Cao, Jianming
  • Qi, Donghui
  • Ma, Yanlei

Abstract

The growing emphasis on reducing global greenhouse gas emissions has highlighted challenges associated with transitioning to carbon peaking and carbon neutrality. The increasing utilization of renewable but intermittent energy sources, such as solar and wind, and the need to manage supply and demand has driven the development of energy storage fuels such as methanol, which is clean, versatile, and abundant. As a result, the hydrogenation of carbon dioxide (CO2) to methanol using various catalysts is gaining momentum. This review analyzes and summarizes the performance of Cu-based, In-based, noble metal-, and solid solution-based catalysts in terms of preparation, reaction mechanism, CO2 conversion efficiency, and methanol selectivity. The optimal reaction conditions for these catalysts typically fall within 200–300 °C and 1.5–5 MPa. The Cu-based are the most widely studied and exhibit a median CO2 conversion efficiency and methanol selectivity of 13.6 % and 69.2 % respectively, whereas In- and solid solution-based catalysts exhibit similar performances but superior stabilities. The noble metal-based catalysts exhibit different CO2 conversion efficiencies (0.6 %–66 %) and methanol selectivities (11 %–100 %) with limited data on stability. This comprehensive analysis provides a theoretical foundation and reference assisting researchers selecting the catalysts for the production of methanol using CO2 hydrogenation.

Suggested Citation

  • Zhang, Peng & Chen, Qi & Chen, Hao & Geng, Limin & Wu, Han & Chen, Zhanming & Cao, Jianming & Qi, Donghui & Ma, Yanlei, 2025. "A new transportation energy review: methanol catalytic synthesis from CO2 green hydrogenation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 218(C).
  • Handle: RePEc:eee:rensus:v:218:y:2025:i:c:s1364032125004927
    DOI: 10.1016/j.rser.2025.115819
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032125004927
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115819?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Hao & Su, Xin & He, Jingjing & Xie, Bin, 2019. "Investigation on combustion and emission characteristics of a common rail diesel engine fueled with diesel/n-pentanol/methanol blends," Energy, Elsevier, vol. 167(C), pages 297-311.
    2. Bos, M.J. & Kersten, S.R.A. & Brilman, D.W.F., 2020. "Wind power to methanol: Renewable methanol production using electricity, electrolysis of water and CO2 air capture," Applied Energy, Elsevier, vol. 264(C).
    3. Lin, Haiyang & Wu, Qiuwei & Chen, Xinyu & Yang, Xi & Guo, Xinyang & Lv, Jiajun & Lu, Tianguang & Song, Shaojie & McElroy, Michael, 2021. "Economic and technological feasibility of using power-to-hydrogen technology under higher wind penetration in China," Renewable Energy, Elsevier, vol. 173(C), pages 569-580.
    4. Pérez-Fortes, Mar & Schöneberger, Jan C. & Boulamanti, Aikaterini & Tzimas, Evangelos, 2016. "Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment," Applied Energy, Elsevier, vol. 161(C), pages 718-732.
    5. Marzena Frankowska & Marta Mańkowska & Marcin Rabe & Andrzej Rzeczycki & Elżbieta Szaruga, 2022. "Structural Model of Power Grid Stabilization in the Green Hydrogen Supply Chain System—Conceptual Assumptions," Energies, MDPI, vol. 15(2), pages 1-14, January.
    6. Roy van den Berg & Gonzalo Prieto & Gerda Korpershoek & Lars I. van der Wal & Arnoldus J. van Bunningen & Susanne Lægsgaard-Jørgensen & Petra E. de Jongh & Krijn P. de Jong, 2016. "Structure sensitivity of Cu and CuZn catalysts relevant to industrial methanol synthesis," Nature Communications, Nature, vol. 7(1), pages 1-7, December.
    7. Perejón, Antonio & Romeo, Luis M. & Lara, Yolanda & Lisbona, Pilar & Martínez, Ana & Valverde, Jose Manuel, 2016. "The Calcium-Looping technology for CO2 capture: On the important roles of energy integration and sorbent behavior," Applied Energy, Elsevier, vol. 162(C), pages 787-807.
    8. Lee, Boreum & Lee, Hyunjun & Lim, Dongjun & Brigljević, Boris & Cho, Wonchul & Cho, Hyun-Seok & Kim, Chang-Hee & Lim, Hankwon, 2020. "Renewable methanol synthesis from renewable H2 and captured CO2: How can power-to-liquid technology be economically feasible?," Applied Energy, Elsevier, vol. 279(C).
    9. Dongliang, Wang & Wenliang, Meng & Huairong, Zhou & Guixian, Li & Yong, Yang & Hongwei, Li, 2021. "Green hydrogen coupling with CO2 utilization of coal-to-methanol for high methanol productivity and low CO2 emission," Energy, Elsevier, vol. 231(C).
    10. Schrotenboer, Albert H. & Veenstra, Arjen A.T. & uit het Broek, Michiel A.J. & Ursavas, Evrim, 2022. "A Green Hydrogen Energy System: Optimal control strategies for integrated hydrogen storage and power generation with wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Rouwenhorst, Kevin H.R. & Van der Ham, Aloijsius G.J. & Mul, Guido & Kersten, Sascha R.A., 2019. "Islanded ammonia power systems: Technology review & conceptual process design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    12. Simon Kaiser & Felix Siems & Clemens Mostert & Stefan Bringezu, 2022. "Environmental and Economic Performance of CO 2 -Based Methanol Production Using Long-Distance Transport for H 2 in Combination with CO 2 Point Sources: A Case Study for Germany," Energies, MDPI, vol. 15(7), pages 1-22, March.
    13. Kotowicz, Janusz & Węcel, Daniel & Brzęczek, Mateusz, 2021. "Analysis of the work of a “renewable” methanol production installation based ON H2 from electrolysis and CO2 from power plants," Energy, Elsevier, vol. 221(C).
    14. Galusnyak, Stefan Cristian & Petrescu, Letitia & Chisalita, Dora Andreea & Cormos, Calin-Cristian, 2022. "Life cycle assessment of methanol production and conversion into various chemical intermediates and products," Energy, Elsevier, vol. 259(C).
    15. Qi Huang & Baokai Xia & Ming Li & Hongxin Guan & Markus Antonietti & Sheng Chen, 2024. "Single-zinc vacancy unlocks high-rate H2O2 electrosynthesis from mixed dioxygen beyond Le Chatelier principle," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Aasadnia, Majid & Mehrpooya, Mehdi, 2018. "Large-scale liquid hydrogen production methods and approaches: A review," Applied Energy, Elsevier, vol. 212(C), pages 57-83.
    17. Somtochukwu Godfrey Nnabuife & Caleb Kwasi Darko & Precious Chineze Obiako & Boyu Kuang & Xiaoxiao Sun & Karl Jenkins, 2023. "A Comparative Analysis of Different Hydrogen Production Methods and Their Environmental Impact," Clean Technol., MDPI, vol. 5(4), pages 1-37, November.
    18. Valverde-Isorna, L. & Ali, D. & Hogg, D. & Abdel-Wahab, M., 2016. "Modelling the performance of wind–hydrogen energy systems: Case study the Hydrogen Office in Scotland/UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1313-1332.
    19. Yang, Chi-Jen & Jackson, Robert B., 2012. "China's growing methanol economy and its implications for energy and the environment," Energy Policy, Elsevier, vol. 41(C), pages 878-884.
    20. Niall Mac Dowell & Paul S. Fennell & Nilay Shah & Geoffrey C. Maitland, 2017. "The role of CO2 capture and utilization in mitigating climate change," Nature Climate Change, Nature, vol. 7(4), pages 243-249, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tabibian, Seyed Shayan & Sharifzadeh, Mahdi, 2023. "Statistical and analytical investigation of methanol applications, production technologies, value-chain and economy with a special focus on renewable methanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    2. Rezaei, Mostafa & Akimov, Alexandr & Gray, Evan MacA., 2024. "Techno-economics of renewable hydrogen export: A case study for Australia-Japan," Applied Energy, Elsevier, vol. 374(C).
    3. Kim, Seokyoung & Dodds, Paul E. & Butnar, Isabela, 2024. "Technoeconomic characterisation of low-carbon liquid hydrocarbons production," Energy, Elsevier, vol. 294(C).
    4. Samanta, Samiran & Roy, Dibyendu & Roy, Sumit & Smallbone, Andrew & Roskilly, Anthony Paul, 2023. "Techno-economic analysis of a fuel-cell driven integrated energy hub for decarbonising transportation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    5. Kotowicz, J. & Brzęczek, M., 2021. "Methods to increase the efficiency of production and purification installations of renewable methanol," Renewable Energy, Elsevier, vol. 177(C), pages 568-583.
    6. Ravikumar, Dwarakanath & Keoleian, Gregory & Miller, Shelie, 2020. "The environmental opportunity cost of using renewable energy for carbon capture and utilization for methanol production," Applied Energy, Elsevier, vol. 279(C).
    7. Janusz Kotowicz & Mateusz Brzęczek & Aleksandra Walewska & Kamila Szykowska, 2022. "Methanol Production in the Brayton Cycle," Energies, MDPI, vol. 15(4), pages 1-14, February.
    8. Wang, Qian & Du, Caiyi & Zhang, Xueguang, 2024. "Direct air capture capacity configuration and cost allocation based on sharing mechanism," Applied Energy, Elsevier, vol. 374(C).
    9. Galusnyak, Stefan Cristian & Petrescu, Letitia & Chisalita, Dora Andreea & Cormos, Calin-Cristian, 2022. "Life cycle assessment of methanol production and conversion into various chemical intermediates and products," Energy, Elsevier, vol. 259(C).
    10. Rahmat, Yoga & Maier, Simon & Moser, Francisco & Raab, Moritz & Hoffmann, Christian & Repke, Jens-Uwe & Dietrich, Ralph-Uwe, 2023. "Techno-economic and exergy analysis of e-methanol production under fixed operating conditions in Germany," Applied Energy, Elsevier, vol. 351(C).
    11. Galusnyak, Stefan Cristian & Petrescu, Letitia & Chisalita, Dora-Andreea & Cormos, Calin-Cristian, 2025. "Techno-environmental assessment of methanol production using chemical looping technologies," Energy, Elsevier, vol. 318(C).
    12. He, Song & Zheng, Yawen & Zeng, Xuelan & Wang, Junyao & Gao, Lifan & Yang, Dongtai, 2024. "A novel Ca-Ni looping with carbonation heat thermochemical regeneration method for post-combustion CO2 capture: System integration, energy-saving mechanism, and performance sensitivity analysis," Energy, Elsevier, vol. 312(C).
    13. Ma, Qian & Chang, Yuan & Yuan, Bo & Song, Zhaozheng & Xue, Jinjun & Jiang, Qingzhe, 2022. "Utilizing carbon dioxide from refinery flue gas for methanol production: System design and assessment," Energy, Elsevier, vol. 249(C).
    14. Hermesmann, M. & Grübel, K. & Scherotzki, L. & Müller, T.E., 2021. "Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    15. Mancusi, E. & Bareschino, P. & Brachi, P. & Coppola, A. & Ruoppolo, G. & Urciuolo, M. & Pepe, F., 2021. "Feasibility of an integrated biomass-based CLC combustion and a renewable-energy-based methanol production systems," Renewable Energy, Elsevier, vol. 179(C), pages 29-36.
    16. von Storch, Henrik & Roeb, Martin & Stadler, Hannes & Sattler, Christian & Bardow, André & Hoffschmidt, Bernhard, 2016. "On the assessment of renewable industrial processes: Case study for solar co-production of methanol and power," Applied Energy, Elsevier, vol. 183(C), pages 121-132.
    17. Huang, Yue & Zhu, Lin & He, Yangdong & Wang, Yuan & Hao, Qiang & Zhu, Yifei, 2023. "Carbon dioxide utilization based on exergoenvironmental sustainability assessment: A case study of CO2 hydrogenation to methanol," Energy, Elsevier, vol. 273(C).
    18. Quarton, Christopher J. & Samsatli, Sheila, 2020. "The value of hydrogen and carbon capture, storage and utilisation in decarbonising energy: Insights from integrated value chain optimisation," Applied Energy, Elsevier, vol. 257(C).
    19. Harris, Kylee & Grim, R. Gary & Huang, Zhe & Tao, Ling, 2021. "A comparative techno-economic analysis of renewable methanol synthesis from biomass and CO2: Opportunities and barriers to commercialization," Applied Energy, Elsevier, vol. 303(C).
    20. Hüseyin Güleroğlu & Zehra Yumurtacı, 2025. "Life Cycle Assessment of Green Methanol Production Based on Multi-Seasonal Modeling of Hybrid Renewable Energy and Storage Systems," Sustainability, MDPI, vol. 17(2), pages 1-29, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:218:y:2025:i:c:s1364032125004927. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.