Enhancing sustainable energy harvesting with triboelectric nanogenerators (TENGs): Advanced materials and performance enhancement strategies
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2025.115663
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Toyabur Rahman, M. & Sohel Rana, SM & Salauddin, Md. & Maharjan, Pukar & Bhatta, Trilochan & Kim, Hyunsik & Cho, Hyunok & Park, Jae Yeong, 2020. "A highly miniaturized freestanding kinetic-impact-based non-resonant hybridized electromagnetic-triboelectric nanogenerator for human induced vibrations harvesting," Applied Energy, Elsevier, vol. 279(C).
- Li, Yanhong & Guo, Ziting & Zhao, Zhihao & Gao, Yikui & Yang, Peiyuan & Qiao, Wenyan & Zhou, Linglin & Wang, Jie & Wang, Zhong Lin, 2023. "Multi-layered triboelectric nanogenerator incorporated with self-charge excitation for efficient water wave energy harvesting," Applied Energy, Elsevier, vol. 336(C).
- Yuxiang Shi & Peng Yang & Rui Lei & Zhaoqi Liu & Xuanyi Dong & Xinglin Tao & Xiangcheng Chu & Zhong Lin Wang & Xiangyu Chen, 2023. "Eye tracking and eye expression decoding based on transparent, flexible and ultra-persistent electrostatic interface," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Jia Cheng & Wenbo Ding & Yunlong Zi & Yijia Lu & Linhong Ji & Fan Liu & Changsheng Wu & Zhong Lin Wang, 2018. "Triboelectric microplasma powered by mechanical stimuli," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
- Xiong, Xiaobai, 2021. "Bring technology home and stay healthy: The role of fourth industrial revolution and technology in improving the efficacy of health care spending," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhou, Xu & Wang, Kangda & Li, Siyu & Wang, Yadong & Sun, Daoyu & Wang, Longlong & He, Zhizhu & Tang, Wei & Liu, Huicong & Jin, Xiaoping & Li, Zhen, 2024. "An ultra-compact lightweight electromagnetic generator enhanced with Halbach magnet array and printed triphase windings," Applied Energy, Elsevier, vol. 353(PA).
- Liu, Mingyi & Qian, Feng & Mi, Jia & Zuo, Lei, 2022. "Biomechanical energy harvesting for wearable and mobile devices: State-of-the-art and future directions," Applied Energy, Elsevier, vol. 321(C).
- Kınas, Zeynep & Karabiber, Abdulkerim & Yar, Adem & Ozen, Abdurrahman & Ozel, Faruk & Ersöz, Mustafa & Okbaz, Abdulkerim, 2022. "High-performance triboelectric nanogenerator based on carbon nanomaterials functionalized polyacrylonitrile nanofibers," Energy, Elsevier, vol. 239(PD).
- Vahidhosseini, Seyed Mohammad & Rashidi, Saman & Ehsani, Mohammad Hossein, 2025. "Efficient energy harvesting using triboelectric nanogenerators (TENGs): Integration with technologies, wearable applications, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
- Wang, Chen & Lai, Siu-Kai & Wang, Jia-Mei & Feng, Jing-Jing & Ni, Yi-Qing, 2021. "An ultra-low-frequency, broadband and multi-stable tri-hybrid energy harvester for enabling the next-generation sustainable power," Applied Energy, Elsevier, vol. 291(C).
- Zhang, Jiacheng & Yu, Yang & Li, Hengyu & Zhu, Mingkang & Zhang, Sheng & Gu, Chengjie & Jiang, Lin & Wang, Zhong Lin & Zhu, Jianyang & Cheng, Tinghai, 2024. "Triboelectric-electromagnetic hybrid generator with Savonius flapping wing for low-velocity water flow energy harvesting," Applied Energy, Elsevier, vol. 357(C).
- Khosroshahi, Zahra & Karimzadeh, Fathallah & Enayati, Mohammad Hossein & Gowda, Hitesh G. Bettaswamy & Wallrabe, Ulrike, 2025. "Humidity resistant triboelectric nanogenerators for wind energy harvesting: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
- Heng Liu & Dongxin Guo & Hengda Zhu & Honggui Wen & Jiawei Li & Lingyu Wan, 2025. "Shell-Optimized Hybrid Generator for Ocean Wave Energy Harvesting," Energies, MDPI, vol. 18(6), pages 1-18, March.
- Wang, Chen & Chai, Hongfei & Li, Gaolei & Wang, Wei & Tian, Ruilan & Wen, Gui-Lin & Wang, Chun H. & Lai, Siu-Kai, 2024. "Boosting biomechanical and wave energy harvesting efficiency through a novel triple hybridization of piezoelectric, electromagnetic, and triboelectric generators," Applied Energy, Elsevier, vol. 374(C).
- Liu, Zicheng & Hu, Guobiao & Wang, Yawei & Yoon, Heesoo & Zhao, Chaoyang & Li, Xin & Yang, Yaowen, 2025. "Electromechanical modeling and experimental validation of an origami-structured triboelectric vibration energy harvester," Applied Energy, Elsevier, vol. 389(C).
- Kyeonghee Lim & Jakyoung Lee & Sumin Kim & Myoungjae Oh & Chin Su Koh & Hunkyu Seo & Yeon-Mi Hong & Won Gi Chung & Jiuk Jang & Jung Ah Lim & Hyun Ho Jung & Jang-Ung Park, 2024. "Interference haptic stimulation and consistent quantitative tactility in transparent electrotactile screen with pressure-sensitive transistors," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Rui Li & He Huang & Chuan Wu, 2023. "A Method of Vibration Measurement with the Triboelectric Sensor during Geo-Energy Drilling," Energies, MDPI, vol. 16(2), pages 1-10, January.
- Zhao, Chaoyang & Hu, Guobiao & Li, Xin & Liu, Zicheng & Yuan, Weifeng & Yang, Yaowen, 2023. "Wide-bandwidth triboelectric energy harvester combining impact nonlinearity and multi-resonance method," Applied Energy, Elsevier, vol. 348(C).
- Hu, Guobiao & Zhao, Chaoyang & Yang, Yaowen & Li, Xin & Liang, Junrui, 2022. "Triboelectric energy harvesting using an origami-inspired structure," Applied Energy, Elsevier, vol. 306(PB).
- Liu, Ping & Zhong, Tao & Xu, Gaobo & Mao, Wenfei & Yang, Shijing & Jiang, Zezhuan & Xu, Cunyun & Song, Qunliang, 2024. "Controlling the residual charge to alleviate the frequency dependence of ternary direct current triboelectric nanogenerators," Applied Energy, Elsevier, vol. 367(C).
- Pang, Yafeng & Zhu, Xingyi & Jin, Yiyang & Yang, Zichao & Liu, Shuainian & Shen, Lingjie & Li, Xinhong & Lee, Chengkuo, 2023. "Textile-inspired triboelectric nanogenerator as intelligent pavement energy harvester and self-powered skid resistance sensor," Applied Energy, Elsevier, vol. 348(C).
- Yang, Xin & Lai, Siu-Kai & Wang, Chen & Wang, Jia-Mei & Ding, Hu, 2022. "On a spring-assisted multi-stable hybrid-integrated vibration energy harvester for ultra-low-frequency excitations," Energy, Elsevier, vol. 252(C).
- Ebrahimian, Fariba & Kabirian, Zohre & Younesian, Davood & Eghbali, Pezhman, 2021. "Auxetic clamped-clamped resonators for high-efficiency vibration energy harvesting at low-frequency excitation," Applied Energy, Elsevier, vol. 295(C).
- Lin Xu & Md Al Mahadi Hasan & Heting Wu & Ya Yang, 2021. "Electromagnetic–Triboelectric Hybridized Nanogenerators," Energies, MDPI, vol. 14(19), pages 1-27, September.
- Cannavacciuolo, Lorella & Ferraro, Giovanna & Ponsiglione, Cristina & Primario, Simonetta & Quinto, Ivana, 2023. "Technological innovation-enabling industry 4.0 paradigm: A systematic literature review," Technovation, Elsevier, vol. 124(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:216:y:2025:i:c:s1364032125003363. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.