IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v216y2025ics1364032125003363.html
   My bibliography  Save this article

Enhancing sustainable energy harvesting with triboelectric nanogenerators (TENGs): Advanced materials and performance enhancement strategies

Author

Listed:
  • Vahidhosseini, Seyed Mohammad
  • Rashidi, Saman
  • Ehsani, Mohammad Hossein

Abstract

The growing global energy demand and the pressing need for sustainable power solutions have intensified the search for innovative energy harvesting technologies. Triboelectric nanogenerators (TENGs) have emerged as promising candidates due to their ability to convert mechanical energy into electrical energy efficiently. This paper provides a comprehensive review of advanced materials and performance enhancement strategies for TENGs, emphasizing their critical role in addressing the current energy crisis. This review explores the foundational principles and operational modes of TENGs, including vertical contact-separation, lateral sliding, single-electrode, and freestanding triboelectric-layer modes. The paper highlights TENGs’ unique attributes such as high efficiency at low frequencies, lightweight and flexible design, scalability, cost-effectiveness, and environmental friendliness, making them suitable for various applications. Key sections of this review focus on the advanced materials used in TENGs, including nanostructured surfaces and interfaces, hybrid and composite materials, and eco-friendly and biodegradable materials. Techniques such as nanoimprinting, etching, and nanomaterial coatings are discussed in detail, showcasing their impact on enhancing TENG performance. Furthermore, the review delves into performance enhancement strategies, covering multi-dimensional TENGs, optimization of contact electrification through surface modification, selection of triboelectric pairs, nano and microstructuring, and dynamic tuning mechanisms. By providing a thorough examination of these advanced materials and strategies, this paper underscores their importance in improving TENG efficiency and reliability, paving the way for sustainable energy solutions in the future.

Suggested Citation

  • Vahidhosseini, Seyed Mohammad & Rashidi, Saman & Ehsani, Mohammad Hossein, 2025. "Enhancing sustainable energy harvesting with triboelectric nanogenerators (TENGs): Advanced materials and performance enhancement strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:rensus:v:216:y:2025:i:c:s1364032125003363
    DOI: 10.1016/j.rser.2025.115663
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032125003363
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115663?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:216:y:2025:i:c:s1364032125003363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.