IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v214y2025ics1364032125001832.html
   My bibliography  Save this article

Dual-gate Temporal Fusion Transformer for estimating large-scale land surface solar irradiation

Author

Listed:
  • Liao, Xuan
  • Wong, Man Sing
  • Zhu, Rui

Abstract

An accurate estimation of land surface solar irradiation (LSSI) is crucial to address the solar intermittency for optimizing solar photovoltaic (PV) installation and mitigrating PV curtailment. This involves enhancing solar photovoltaic (PV) system efficiency by optimizing layout and maximizing solar energy capture and conversion. While deep learning methods have significantly improved the rapid and accurate estimation of solar irradiation, they face challenges in handling geographical heterogeneity and providing interpretable results. To address these challenges, this study proposes the Dual-gate Temporal Fusion Transformer (DGTFT), a novel interpretable deep learning network, to improve LSSI estimation. By integrating the Temporal Fusion Transformer with the Dual-gate Gated Residual Network and Dual-gate Multi-head Cross Attention, the optimal network achieved R2=0.93, MAE=0.022 (kWh/m2), RMSE=0.038 (kWh/m2), rRMSE=0.13, and nRMSE=0.048 through ablation experiments. When applied to datasets observed from Australia, China, and Japan, DGTFT outperformed traditional machine learning methods with a minimum R2 increase of 23.88%, MAE decrease of 43.18%, RMSE decrease of 9.09%, rRMSE decrease of 32.25%, and nRMSE decrease of 62.79%. Furthermore, the interpretability results of the DGTFT model indicate that clear-sky solar irradiation significantly contributed to the model’s performance from Australia and Japan; and the maximum temperature and humidity were the largest importance variables in the Chinese dataset. Accurately estimating LSSI, providing interpretable results, and generating continuous solar irradiation maps for large-scale areas, this study aids in quantifying solar potential and offers scientific guidance for the PV industry’s development.

Suggested Citation

  • Liao, Xuan & Wong, Man Sing & Zhu, Rui, 2025. "Dual-gate Temporal Fusion Transformer for estimating large-scale land surface solar irradiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 214(C).
  • Handle: RePEc:eee:rensus:v:214:y:2025:i:c:s1364032125001832
    DOI: 10.1016/j.rser.2025.115510
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032125001832
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115510?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, Peijun & Zhou, Heng & Liu, Jiang & Nakanishi, Yosuke, 2023. "Interpretable building energy consumption forecasting using spectral clustering algorithm and temporal fusion transformers architecture," Applied Energy, Elsevier, vol. 349(C).
    2. Ajith, Meenu & Martínez-Ramón, Manel, 2023. "Deep learning algorithms for very short term solar irradiance forecasting: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    3. Mercier, Thomas M. & Sabet, Amin & Rahman, Tasmiat, 2024. "Vision transformer models to measure solar irradiance using sky images in temperate climates," Applied Energy, Elsevier, vol. 362(C).
    4. Zang, Haixiang & Liu, Ling & Sun, Li & Cheng, Lilin & Wei, Zhinong & Sun, Guoqiang, 2020. "Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations," Renewable Energy, Elsevier, vol. 160(C), pages 26-41.
    5. Miguel López Santos & Xela García-Santiago & Fernando Echevarría Camarero & Gonzalo Blázquez Gil & Pablo Carrasco Ortega, 2022. "Application of Temporal Fusion Transformer for Day-Ahead PV Power Forecasting," Energies, MDPI, vol. 15(14), pages 1-22, July.
    6. Lim, Bryan & Arık, Sercan Ö. & Loeff, Nicolas & Pfister, Tomas, 2021. "Temporal Fusion Transformers for interpretable multi-horizon time series forecasting," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1748-1764.
    7. Liao, Xuan & Zhu, Rui & Wong, Man Sing & Heo, Joon & Chan, P.W. & Kwok, Coco Yin Tung, 2023. "Fast and accurate estimation of solar irradiation on building rooftops in Hong Kong: A machine learning-based parameterization approach," Renewable Energy, Elsevier, vol. 216(C).
    8. Wu, Binrong & Wang, Lin & Zeng, Yu-Rong, 2022. "Interpretable wind speed prediction with multivariate time series and temporal fusion transformers," Energy, Elsevier, vol. 252(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Binrong & Yu, Sihao & Peng, Lu & Wang, Lin, 2024. "Interpretable wind speed forecasting with meteorological feature exploring and two-stage decomposition," Energy, Elsevier, vol. 294(C).
    2. Verdone, Alessio & Panella, Massimo & De Santis, Enrico & Rizzi, Antonello, 2025. "A review of solar and wind energy forecasting: From single-site to multi-site paradigm," Applied Energy, Elsevier, vol. 392(C).
    3. Niu, Zhewen & Han, Xiaoqing & Zhang, Dongxia & Wu, Yuxiang & Lan, Songyan, 2024. "Interpretable wind power forecasting combining seasonal-trend representations learning with temporal fusion transformers architecture," Energy, Elsevier, vol. 306(C).
    4. Frank, Johannes, 2023. "Forecasting realized volatility in turbulent times using temporal fusion transformers," FAU Discussion Papers in Economics 03/2023, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    5. Nascimento, Erick Giovani Sperandio & de Melo, Talison A.C. & Moreira, Davidson M., 2023. "A transformer-based deep neural network with wavelet transform for forecasting wind speed and wind energy," Energy, Elsevier, vol. 278(C).
    6. Zeng, Huanze & Wu, Binrong & Fang, Haoyu & Lin, Jiacheng, 2025. "Interpretable wind speed forecasting through two-stage decomposition with comprehensive relative importance analysis," Applied Energy, Elsevier, vol. 392(C).
    7. Du, Pei & Yang, Dongchuan & Li, Yanzhao & Wang, Jianzhou, 2024. "An innovative interpretable combined learning model for wind speed forecasting," Applied Energy, Elsevier, vol. 358(C).
    8. Li, Xin & Xu, Yechi & Law, Rob & Wang, Shouyang, 2024. "Enhancing tourism demand forecasting with a transformer-based framework," Annals of Tourism Research, Elsevier, vol. 107(C).
    9. Hanif, M.F. & Mi, J., 2024. "Harnessing AI for solar energy: Emergence of transformer models," Applied Energy, Elsevier, vol. 369(C).
    10. Yu, Hanxin & Chen, Shanlin & Chu, Yinghao & Li, Mengying & Ding, Yueming & Cui, Rongxi & Zhao, Xin, 2024. "Self-attention mechanism to enhance the generalizability of data-driven time-series prediction: A case study of intra-hour power forecasting of urban distributed photovoltaic systems," Applied Energy, Elsevier, vol. 374(C).
    11. Li, Xin & Xu, Yechi & Law, Rob & Wang, Shouyang, 2024. "Enhancing Tourism Demand Forecasting with a Transformer-based Framework," SocArXiv 5ezn3_v1, Center for Open Science.
    12. Bentsen, Lars Ødegaard & Warakagoda, Narada Dilp & Stenbro, Roy & Engelstad, Paal, 2023. "Spatio-temporal wind speed forecasting using graph networks and novel Transformer architectures," Applied Energy, Elsevier, vol. 333(C).
    13. Guo, Qing & Mai, Zishan, 2024. "How do seasonal, significant events, and policies affect China's REE export prices? Based on deep learning perspective," Resources Policy, Elsevier, vol. 96(C).
    14. Zhao, Yongning & Liao, Haohan & Zhao, Yuan & Pan, Shiji, 2025. "Data-augmented trend-fluctuation representations by interpretable contrastive learning for wind power forecasting," Applied Energy, Elsevier, vol. 380(C).
    15. Zhuang, Xinyu & Wang, Wendong & Su, Yuliang & Shi, Menghe & Dai, Zhenxue, 2025. "Life-cycle prediction and optimization of sequestration performance in CO2 mixture huff-n-puff development for tight hydrocarbon reservoirs," Applied Energy, Elsevier, vol. 388(C).
    16. Miguel López Santos & Xela García-Santiago & Fernando Echevarría Camarero & Gonzalo Blázquez Gil & Pablo Carrasco Ortega, 2022. "Application of Temporal Fusion Transformer for Day-Ahead PV Power Forecasting," Energies, MDPI, vol. 15(14), pages 1-22, July.
    17. He Jiang & Sheng Pan & Yao Dong & Jianzhou Wang, 2024. "Probabilistic electricity price forecasting based on penalized temporal fusion transformer," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1465-1491, August.
    18. Frederick Nsambu Kijjambu & Benjamin Musiita & Asaph Kaburura Katarangi & Geoffrey Kahangane & Sheilla Akampwera, 2023. "Determinants of Uganda’s Debt Sustainability: The Public Debt Dynamics Model in Perspective," Journal of Economics and Behavioral Studies, AMH International, vol. 15(4), pages 106-124.
    19. Fang, Ping & Fu, Wenlong & Wang, Kai & Xiong, Dongzhen & Zhang, Kai, 2022. "A compositive architecture coupling outlier correction, EWT, nonlinear Volterra multi-model fusion with multi-objective optimization for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 307(C).
    20. Wang, Zhenyu & Zhang, Yunpeng & Li, Guorong & Zhang, Jinlong & Zhou, Hai & Wu, Ji, 2024. "A novel solar irradiance forecasting method based on multi-physical process of atmosphere optics and LSTM-BP model," Renewable Energy, Elsevier, vol. 226(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:214:y:2025:i:c:s1364032125001832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.