IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v209y2025ics1364032124008323.html
   My bibliography  Save this article

Enhancing double-slope solar still performance through integrated channel shape variations: An experimental and numerical simulation investigation

Author

Listed:
  • Jeyaraj, Thavamani
  • Kumar, Pankaj
  • Pathak, Shaswat

Abstract

The solar still system effectively addresses water scarcity concerns by adopting suitable methods for enhancing yields. Incorporating a preheating system, such as channels within solar still leads to an increased yield from the conversion of saline water. This research integrates various channel shapes (square, rectangular, triangular, and trapezoidal) into double-slope solar stills (DSSS) and their internal properties using numerical simulation and experimental processes under similar climatic conditions. A three-dimensional, multi-phase computational fluid dynamics (CFD) model of solar still was developed using Ansys Fluent 18.1 to compare simulation results with experimental data under the atmospheric conditions of Chengalpattu. The simulation predicted a maximum water yield of 0.44 kg/m2/h, while experimental data showed a peak yield of 0.41 kg/m2/h between 1 p.m. and 2 p.m. There is a 6.82 % variation between the simulations and the experiments. According to the experimental results, the modified system shows a maximum variation of 8.13 % in influence parameter; the yield rate differences for the square, rectangular, triangular, and trapezoidal channels are 8.13, 7.24, 6.73, and 6.52 %, respectively. Trapezoidal channels are superior to other shapes due to their large evaporation capacity, higher wall temperatures due to increased solar absorption area, and superior base resistance. The simulation further explains the heat and mass transfer mechanics into the channel due to resistance from the feed water surface. The research suggests that varying channel shapes inside solar still enhance evaporation and yield rates compared to DSSS systems.

Suggested Citation

  • Jeyaraj, Thavamani & Kumar, Pankaj & Pathak, Shaswat, 2025. "Enhancing double-slope solar still performance through integrated channel shape variations: An experimental and numerical simulation investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
  • Handle: RePEc:eee:rensus:v:209:y:2025:i:c:s1364032124008323
    DOI: 10.1016/j.rser.2024.115106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124008323
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.115106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:209:y:2025:i:c:s1364032124008323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.