IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v163y2021icp465-479.html
   My bibliography  Save this article

Energy and exergy analysis of a new solar still composed of parabolic trough collector with built-in solar still

Author

Listed:
  • Amiri, Hossein
  • Aminy, Mohammad
  • Lotfi, Marzieh
  • Jafarbeglo, Behzad

Abstract

The authors previously proposed and experimentally investigated a new standalone desalination system that is composed of a parabolic trough collector put under conventional solar still. In this study, an unsteady theoretical model is developed using the energy balance equations for the main components of the system to investigate the effect of different parameters on the performance of the new solar still. The model is used for calculation of productivity, and the absorber, saline water, and the glass cover temperatures. Results obtained using the present model are compared with the experimental results and a good agreement is observed between them. Moreover, as the experimental study was limited to the winter period, to thoroughly understand the new system performance at different climates conditions, its performance in four seasons is considered. Results show that in Kerman weather conditions, on average the present solar still system produces 0.961 L of freshwater per day in summer which is 55% more than the yield in winter for the Fixed parabolic trough collector. For the parabolic trough collector with tracking systems, the system would produce 1.266 L per day in summer.

Suggested Citation

  • Amiri, Hossein & Aminy, Mohammad & Lotfi, Marzieh & Jafarbeglo, Behzad, 2021. "Energy and exergy analysis of a new solar still composed of parabolic trough collector with built-in solar still," Renewable Energy, Elsevier, vol. 163(C), pages 465-479.
  • Handle: RePEc:eee:renene:v:163:y:2021:i:c:p:465-479
    DOI: 10.1016/j.renene.2020.09.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120314154
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.09.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dev, Rahul & Abdul-Wahab, Sabah A. & Tiwari, G.N., 2011. "Performance study of the inverted absorber solar still with water depth and total dissolved solid," Applied Energy, Elsevier, vol. 88(1), pages 252-264, January.
    2. Hassan, Hamdy & Ahmed, M. Salem & Fathy, Mohamed, 2019. "Experimental work on the effect of saline water medium on the performance of solar still with tracked parabolic trough collector (TPTC)," Renewable Energy, Elsevier, vol. 135(C), pages 136-147.
    3. Kianifar, Ali & Zeinali Heris, Saeed & Mahian, Omid, 2012. "Exergy and economic analysis of a pyramid-shaped solar water purification system: Active and passive cases," Energy, Elsevier, vol. 38(1), pages 31-36.
    4. Muthu Manokar, A. & Kalidasa Murugavel, K. & Esakkimuthu, G., 2014. "Different parameters affecting the rate of evaporation and condensation on passive solar still – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 309-322.
    5. Sharshir, S.W. & Elsheikh, A.H. & Peng, Guilong & Yang, Nuo & El-Samadony, M.O.A. & Kabeel, A.E., 2017. "Thermal performance and exergy analysis of solar stills – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 521-544.
    6. Sampathkumar, K. & Arjunan, T.V. & Pitchandi, P. & Senthilkumar, P., 2010. "Active solar distillation--A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1503-1526, August.
    7. Sivakumar, V. & Ganapathy Sundaram, E., 2013. "Improvement techniques of solar still efficiency: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 246-264.
    8. Omara, Z.M. & Abdullah, A.S. & Kabeel, A.E. & Essa, F.A., 2017. "The cooling techniques of the solar stills' glass covers – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 176-193.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdelgaied, Mohamed & Kabeel, A.E., 2021. "Performance improvement of pyramid solar distillers using a novel combination of absorber surface coated with CuO nano black paint, reflective mirrors, and PCM with pin fins," Renewable Energy, Elsevier, vol. 180(C), pages 494-501.
    2. Abhishek Tiwari & Manish K. Rathod & Amit Kumar, 2023. "A comprehensive review of solar-driven desalination systems and its advancements," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1052-1083, February.
    3. Ahbabi Saray, Jabraeil & Heyhat, Mohammad Mahdi, 2022. "Modeling of a direct absorption parabolic trough collector based on using nanofluid: 4E assessment and water-energy nexus analysis," Energy, Elsevier, vol. 244(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dsilva Winfred Rufuss, D. & Iniyan, S. & Suganthi, L. & Davies, P.A., 2016. "Solar stills: A comprehensive review of designs, performance and material advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 464-496.
    2. Jani, Hardik K. & Modi, Kalpesh V., 2018. "A review on numerous means of enhancing heat transfer rate in solar-thermal based desalination devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 302-317.
    3. Omara, Z.M. & Kabeel, A.E. & Abdullah, A.S., 2017. "A review of solar still performance with reflectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 638-649.
    4. Obai Younis & Ahmed Kadhim Hussein & Mohammed El Hadi Attia & Hakim S. Sultan Aljibori & Lioua Kolsi & Hussein Togun & Bagh Ali & Aissa Abderrahmane & Khanyaluck Subkrajang & Anuwat Jirawattanapanit, 2022. "Comprehensive Review on Solar Stills—Latest Developments and Overview," Sustainability, MDPI, vol. 14(16), pages 1-59, August.
    5. Abd Elbar, Ayman Refat & Hassan, Hamdy, 2020. "An experimental work on the performance of new integration of photovoltaic panel with solar still in semi-arid climate conditions," Renewable Energy, Elsevier, vol. 146(C), pages 1429-1443.
    6. Hassan, Hamdy, 2020. "Comparing the performance of passive and active double and single slope solar stills incorporated with parabolic trough collector via energy, exergy and productivity," Renewable Energy, Elsevier, vol. 148(C), pages 437-450.
    7. Omara, Z.M. & Abdullah, A.S. & Kabeel, A.E. & Essa, F.A., 2017. "The cooling techniques of the solar stills' glass covers – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 176-193.
    8. Nayi, Kuldeep H. & Modi, Kalpesh V., 2018. "Pyramid solar still: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 136-148.
    9. Ibrahim, Ayman G.M. & Allam, Elsayed E. & Elshamarka, Salman E., 2015. "A modified basin type solar still: Experimental performance and economic study," Energy, Elsevier, vol. 93(P1), pages 335-342.
    10. Modi, Kalpesh V. & Nayi, Kuldeep H., 2020. "Efficacy of forced condensation and forced evaporation with thermal energy storage material on square pyramid solar still," Renewable Energy, Elsevier, vol. 153(C), pages 1307-1319.
    11. Elango, C. & Gunasekaran, N. & Sampathkumar, K., 2015. "Thermal models of solar still—A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 856-911.
    12. Sathyamurthy, Ravishankar & El-Agouz, S.A. & Nagarajan, P.K. & Subramani, J. & Arunkumar, T. & Mageshbabu, D. & Madhu, B. & Bharathwaaj, R. & Prakash, N., 2017. "A Review of integrating solar collectors to solar still," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1069-1097.
    13. Jahangiri Mamouri, S. & Gholami Derami, H. & Ghiasi, M. & Shafii, M.B. & Shiee, Z., 2014. "Experimental investigation of the effect of using thermosyphon heat pipes and vacuum glass on the performance of solar still," Energy, Elsevier, vol. 75(C), pages 501-507.
    14. He Fu & Min Dai & Hanwen Song & Xiaoting Hou & Fahid Riaz & Shuai Li & Ke Yang & Imran Ali & Changsheng Peng & Muhammad Sultan, 2021. "Updates on Evaporation and Condensation Methods for the Performance Improvement of Solar Stills," Energies, MDPI, vol. 14(21), pages 1-26, October.
    15. Kabeel, A.E. & Omara, Z.M. & Essa, F.A. & Abdullah, A.S., 2016. "Solar still with condenser – A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 839-857.
    16. Khalilmoghadam, Pooria & Rajabi-Ghahnavieh, Abbas & Shafii, Mohammad Behshad, 2021. "A novel energy storage system for latent heat recovery in solar still using phase change material and pulsating heat pipe," Renewable Energy, Elsevier, vol. 163(C), pages 2115-2127.
    17. Nazari, Saeed & Safarzadeh, Habibollah & Bahiraei, Mehdi, 2019. "Experimental and analytical investigations of productivity, energy and exergy efficiency of a single slope solar still enhanced with thermoelectric channel and nanofluid," Renewable Energy, Elsevier, vol. 135(C), pages 729-744.
    18. El-Sebaii, A.A., 2011. "On effect of wind speed on passive solar still performance based on inner/outer surface temperatures of the glass cover," Energy, Elsevier, vol. 36(8), pages 4943-4949.
    19. Sivakumar, V. & Ganapathy Sundaram, E., 2013. "Improvement techniques of solar still efficiency: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 246-264.
    20. Xiao, Gang & Wang, Xihui & Ni, Mingjiang & Wang, Fei & Zhu, Weijun & Luo, Zhongyang & Cen, Kefa, 2013. "A review on solar stills for brine desalination," Applied Energy, Elsevier, vol. 103(C), pages 642-652.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:163:y:2021:i:c:p:465-479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.