IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v209y2025ics1364032124008268.html
   My bibliography  Save this article

Economic and environmentally efficient biochar production via microwave-assisted co-torrefaction of fruit residue and waste oil

Author

Listed:
  • Lin, Yi Li
  • Zheng, Nai Yun
  • Lin, Wei Hsiu
  • Chang, Chao Chin

Abstract

Addressing climate change and reducing greenhouse gas (GHG) emissions are critical global challenges. This study introduces a novel, cost-effective method to produce high-energy biochar with minimal GHG emissions through a microwave-assisted (MWA) co-torrefaction process. This groundbreaking process not only produces decarbonized solid fuel but also simultaneously reduces waste by utilizing fruit residues and waste cooking oil (WCO). Through the application of the Taguchi experimental method, this research identified torrefaction temperature and the WCO blending ratio as key determinant of the biochar higher heating value (HHV). Notably, Dimocarpus longan waste (DLw) outperformed Citrus maxima branches (CMb) in co-torrefaction, achieving a maximum HHV of 25 MJ/kg, a superior energy yield of 85%, and a fixed carbon content of 28%. Both types of biochar showed increased thermal stability under optimal conditions, meeting the specifications of bituminous coal and offering a viable alternative for coal combustion. The biochar produced from both CMb and DLw demonstrated good energy return on investment (EROI) values of 4–5 and reduced CO2 emissions by 58%–69% compared to burning bituminous coal alone. Remarkably, the cost of implementing this innovative technology at a pilot scale was 76% lower than that traditional biowaste treatment methods. In conclusion, the pioneering MWA co-torrefaction technology presented in this study offers an environmentally friendly, economically advantageous, and highly practical solution for converting biowaste into renewable fuel, aligning with the Sustainable Development Goals (SDGs), particularly Goal 7: Affordable and Clean Energy, and Goal 13: Climate Action.

Suggested Citation

  • Lin, Yi Li & Zheng, Nai Yun & Lin, Wei Hsiu & Chang, Chao Chin, 2025. "Economic and environmentally efficient biochar production via microwave-assisted co-torrefaction of fruit residue and waste oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
  • Handle: RePEc:eee:rensus:v:209:y:2025:i:c:s1364032124008268
    DOI: 10.1016/j.rser.2024.115100
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124008268
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.115100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:209:y:2025:i:c:s1364032124008268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.