IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v152y2021ics1364032121009734.html
   My bibliography  Save this article

Microwave co-torrefaction of waste oil and biomass pellets for simultaneous recovery of waste and co-firing fuel

Author

Listed:
  • Yek, Peter Nai Yuh
  • Chen, Xiangmeng
  • Peng, Wanxi
  • Liew, Rock Keey
  • Cheng, Chin Kui
  • Sonne, Christian
  • Sii, How Sing
  • Lam, Su Shiung

Abstract

The low bulk density and heating value of biomass pellets limit their application as a co-firing fuel and a partial substitute fuel for high-efficiency coal boilers. In this study, we develop an innovative microwave co-torrefaction (MCT) process by combining microwave heating and torrefaction to convert palm waste fruit bunch pellets and used cooking oil (UCO) into torrefied biomass pellets as an alternative fuel. Microwave heating requires a shorter torrefaction duration of only 6–8 min compared with a conventional furnace (20 min) to attain the desired high process temperatures ranging from 200 °C to 300 °C. Torrefied biomass pellets produced from MCT yield less volatile matter (33–49 wt%) and lower oxygen contents (23.1–40.1 wt%) compared with those produced from conventional torrefaction. By conventional torrefaction at 300 °C, the highest fuel ratio of torrefied biomass pellets obtained is 2.0. MCT yields the desired energy yield of 98.1% at 250 °C, the highest fuel ratio of 1.9, and a heating value of 26.4 MJ/kg at 300 °C. MCT exhibits a lower activation energy of 12.0 kJ/mol compared with that of conventional co-torrefaction (13.6 kJ/mol), indicating that MCT can be performed at a relatively low operating temperature and with low energy consumption. These results indicate the potential of microwave heating for performing the co-torrefaction of biomass pellets using UCO as an economical approach to produce desirable pellet fuel from waste and biomass materials.

Suggested Citation

  • Yek, Peter Nai Yuh & Chen, Xiangmeng & Peng, Wanxi & Liew, Rock Keey & Cheng, Chin Kui & Sonne, Christian & Sii, How Sing & Lam, Su Shiung, 2021. "Microwave co-torrefaction of waste oil and biomass pellets for simultaneous recovery of waste and co-firing fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
  • Handle: RePEc:eee:rensus:v:152:y:2021:i:c:s1364032121009734
    DOI: 10.1016/j.rser.2021.111699
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121009734
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111699?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sher, Farooq & Yaqoob, Aqsa & Saeed, Farrukh & Zhang, Shengfu & Jahan, Zaib & Klemeš, Jiří Jaromír, 2020. "Torrefied biomass fuels as a renewable alternative to coal in co-firing for power generation," Energy, Elsevier, vol. 209(C).
    2. Anna Brunerová & Miroslav Müller & Vladimír Šleger & Himsar Ambarita & Petr Valášek, 2018. "Bio-Pellet Fuel from Oil Palm Empty Fruit Bunches (EFB): Using European Standards for Quality Testing," Sustainability, MDPI, vol. 10(12), pages 1-19, November.
    3. Sibiya, N.T. & Oboirien, B. & Lanzini, A. & Gandiglio, M. & Ferrero, D. & Papurello, D. & Bada, S.O., 2021. "Effect of different pre-treatment methods on gasification properties of grass biomass," Renewable Energy, Elsevier, vol. 170(C), pages 875-883.
    4. Wang, L. & Barta-Rajnai, E. & Skreiberg, Ø. & Khalil, R. & Czégény, Z. & Jakab, E. & Barta, Z. & Grønli, M., 2018. "Effect of torrefaction on physiochemical characteristics and grindability of stem wood, stump and bark," Applied Energy, Elsevier, vol. 227(C), pages 137-148.
    5. Basu, Prabir & Butler, James & Leon, Mathias A., 2011. "Biomass co-firing options on the emission reduction and electricity generation costs in coal-fired power plants," Renewable Energy, Elsevier, vol. 36(1), pages 282-288.
    6. Rentizelas, Athanasios A. & Li, Jun, 2016. "Techno-economic and carbon emissions analysis of biomass torrefaction downstream in international bioenergy supply chains for co-firing," Energy, Elsevier, vol. 114(C), pages 129-142.
    7. Chen, Wei-Hsin & Kuo, Po-Chih & Liu, Shih-Hsien & Wu, Wei, 2014. "Thermal characterization of oil palm fiber and eucalyptus in torrefaction," Energy, Elsevier, vol. 71(C), pages 40-48.
    8. Lin, Yi-Li & Zheng, Nai-Yun, 2021. "Biowaste-to-biochar through microwave-assisted wet co-torrefaction of blending mango seed and passion shell with optoelectronic sludge," Energy, Elsevier, vol. 225(C).
    9. Chen, Wei-Hsin & Kuo, Po-Chih, 2011. "Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass," Energy, Elsevier, vol. 36(2), pages 803-811.
    10. Xue, Junjie & Chellappa, Thiago & Ceylan, Selim & Goldfarb, Jillian L., 2018. "Enhancing biomass + coal Co-firing scenarios via biomass torrefaction and carbonization: Case study of avocado pit biomass and Illinois No. 6 coal," Renewable Energy, Elsevier, vol. 122(C), pages 152-162.
    11. Ge, Shengbo & Foong, Shin Ying & Ma, Nyuk Ling & Liew, Rock Keey & Wan Mahari, Wan Adibah & Xia, Changlei & Yek, Peter Nai Yuh & Peng, Wanxi & Nam, Wai Lun & Lim, Xin Yi & Liew, Chin Mei & Chong, Chi , 2020. "Vacuum pyrolysis incorporating microwave heating and base mixture modification: An integrated approach to transform biowaste into eco-friendly bioenergy products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    12. Xin, Shanzhi & Mi, Tie & Liu, Xiaoye & Huang, Fang, 2018. "Effect of torrefaction on the pyrolysis characteristics of high moisture herbaceous residues," Energy, Elsevier, vol. 152(C), pages 586-593.
    13. Huang, Yu-Fong & Cheng, Pei-Hsin & Chiueh, Pei-Te & Lo, Shang-Lien, 2017. "Leucaena biochar produced by microwave torrefaction: Fuel properties and energy efficiency," Applied Energy, Elsevier, vol. 204(C), pages 1018-1025.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Seok Jun & Park, Sun Yong & Oh, Kwang Cheol & Cho, La hoon & Jeon, Young Kwang & Kim, Dae Hyun, 2023. "Improvement of fuel characteristics for forest by-products applied surface torrefaction process," Energy, Elsevier, vol. 284(C).
    2. Macedo, Lucélia A. & Silveira, Edgar A. & Rousset, Patrick & Valette, Jérémy & Commandré, Jean-Michel, 2022. "Synergistic effect of biomass potassium content and oxidative atmosphere: Impact on torrefaction severity and released condensables," Energy, Elsevier, vol. 254(PC).
    3. Umair Yaqub Qazi, 2022. "Future of Hydrogen as an Alternative Fuel for Next-Generation Industrial Applications; Challenges and Expected Opportunities," Energies, MDPI, vol. 15(13), pages 1-40, June.
    4. Muzyka, Roksana & Misztal, Edyta & Hrabak, Joanna & Banks, Scott W. & Sajdak, Marcin, 2023. "Various biomass pyrolysis conditions influence the porosity and pore size distribution of biochar," Energy, Elsevier, vol. 263(PE).
    5. Ni, Liangmeng & Feng, Zixing & Gao, Qi & Hou, Yanmei & He, Yuyu & Ren, Hao & Su, Mengfu & Liu, Zhijia & Hu, Wanhe, 2022. "A novel mechanical kiln for bamboo molded charcoals manufacturing," Applied Energy, Elsevier, vol. 326(C).
    6. Paredes, B.M. & Paredes, J.P. & García, R., 2023. "Integration of biocoal in distributed energy systems: A potential case study in the Spanish coal-mining regions," Energy, Elsevier, vol. 263(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdul Waheed & Salman Raza Naqvi & Imtiaz Ali, 2022. "Co-Torrefaction Progress of Biomass Residue/Waste Obtained for High-Value Bio-Solid Products," Energies, MDPI, vol. 15(21), pages 1-20, November.
    2. Adrian Knapczyk & Sławomir Francik & Marcin Jewiarz & Agnieszka Zawiślak & Renata Francik, 2020. "Thermal Treatment of Biomass: A Bibliometric Analysis—The Torrefaction Case," Energies, MDPI, vol. 14(1), pages 1-31, December.
    3. Yan, Beibei & Jiao, Liguo & Li, Jian & Zhu, Xiaochao & Ahmed, Sarwaich & Chen, Guanyi, 2021. "Investigation on microwave torrefaction: Parametric influence, TG-MS-FTIR analysis, and gasification performance," Energy, Elsevier, vol. 220(C).
    4. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Sher, Farooq & Yaqoob, Aqsa & Saeed, Farrukh & Zhang, Shengfu & Jahan, Zaib & Klemeš, Jiří Jaromír, 2020. "Torrefied biomass fuels as a renewable alternative to coal in co-firing for power generation," Energy, Elsevier, vol. 209(C).
    6. Jorge Miguel Carneiro Ribeiro & Radu Godina & João Carlos de Oliveira Matias & Leonel Jorge Ribeiro Nunes, 2018. "Future Perspectives of Biomass Torrefaction: Review of the Current State-Of-The-Art and Research Development," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    7. Bai, Xiaopeng & Wang, Guanghui & Zhu, Zheng & Cai, Chen & Wang, Zhiqin & Wang, Decheng, 2020. "Investigation of improving the yields and qualities of pyrolysis products with combination rod-milled and torrefaction pretreatment," Renewable Energy, Elsevier, vol. 151(C), pages 446-453.
    8. Niu, Qi & Ronsse, Frederik & Qi, Zhiyong & Zhang, Dongdong, 2022. "Fast torrefaction of large biomass particles by superheated steam: Enhanced solid products for multipurpose production," Renewable Energy, Elsevier, vol. 185(C), pages 552-563.
    9. Wang, Ziliang & Lim, C. Jim & Grace, John R., 2019. "A comprehensive study of sawdust torrefaction in a dual-compartment slot-rectangular spouted bed reactor," Energy, Elsevier, vol. 189(C).
    10. Silveira, Edgar A. & Macedo, Lucélia A. & Rousset, Patrick & Candelier, Kevin & Galvão, Luiz Gustavo O. & Chaves, Bruno S. & Commandré, Jean-Michel, 2022. "A potassium responsive numerical path to model catalytic torrefaction kinetics," Energy, Elsevier, vol. 239(PB).
    11. Dai, Leilei & Wang, Yunpu & Liu, Yuhuan & Ruan, Roger & He, Chao & Yu, Zhenting & Jiang, Lin & Zeng, Zihong & Tian, Xiaojie, 2019. "Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 20-36.
    12. Álvarez, Ana & Nogueiro, Dositeo & Pizarro, Consuelo & Matos, María & Bueno, Julio L., 2018. "Non-oxidative torrefaction of biomass to enhance its fuel properties," Energy, Elsevier, vol. 158(C), pages 1-8.
    13. Sukiran, Mohamad Azri & Wan Daud, Wan Mohd Ashri & Abnisa, Faisal & Nasrin, Abu Bakar & Abdul Aziz, Astimar & Loh, Soh Kheang, 2021. "A comprehensive study on torrefaction of empty fruit bunches: Characterization of solid, liquid and gas products," Energy, Elsevier, vol. 230(C).
    14. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2014. "A review on torrefied biomass pellets as a sustainable alternative to coal in power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 153-160.
    15. Stroh, Alexander & Alobaid, Falah & Busch, Jan-Peter & Ströhle, Jochen & Epple, Bernd, 2015. "3-D numerical simulation for co-firing of torrefied biomass in a pulverized-fired 1 MWth combustion chamber," Energy, Elsevier, vol. 85(C), pages 105-116.
    16. Chai, Meiyun & Xie, Li & Yu, Xi & Zhang, Xingguang & Yang, Yang & Rahman, Md. Maksudur & Blanco, Paula H. & Liu, Ronghou & Bridgwater, Anthony V. & Cai, Junmeng, 2021. "Poplar wood torrefaction: Kinetics, thermochemistry and implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    17. Hasan, Mohd Faizal & Omar, Muhammad Syaraffi & Sukiran, Mohamad Azri & Nyakuma, Bemgba Bevan & Muhamad Said, Mohd Farid, 2022. "Torrefaction of fibrous empty fruit bunch under mild pressurization technique," Renewable Energy, Elsevier, vol. 194(C), pages 349-358.
    18. Arriola, Emmanuel & Chen, Wei-Hsin & Chih, Yi-Kai & De Luna, Mark Daniel & Show, Pau Loke, 2020. "Impact of post-torrefaction process on biochar formation from wood pellets and self-heating phenomena for production safety," Energy, Elsevier, vol. 207(C).
    19. Chen, Wei-Hsin & Lin, Bo-Jhih & Colin, Baptiste & Chang, Jo-Shu & Pétrissans, Anélie & Bi, Xiaotao & Pétrissans, Mathieu, 2018. "Hygroscopic transformation of woody biomass torrefaction for carbon storage," Applied Energy, Elsevier, vol. 231(C), pages 768-776.
    20. Kopczyński, Marcin & Lasek, Janusz A. & Iluk, Andrzej & Zuwała, Jarosław, 2017. "The co-combustion of hard coal with raw and torrefied biomasses (willow (Salix viminalis), olive oil residue and waste wood from furniture manufacturing)," Energy, Elsevier, vol. 140(P1), pages 1316-1325.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:152:y:2021:i:c:s1364032121009734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.