IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v208y2025ics1364032124008177.html
   My bibliography  Save this article

Supercritical water gasification of food waste for hydrogen production

Author

Listed:
  • Costa, João C.B.
  • Dias, Isabela M.
  • Mourão, Lucas C.
  • Souza, Guilherme B.M. de
  • Pereira, Mariana B.
  • Freitas, Fernanda F.
  • Alonso, Christian G.

Abstract

The conversion of renewable biomass, particularly from food waste, into valuable energy sources via supercritical water (SCW) gasification is a promising approach for addressing environmental concerns related to sustainable energy generation, food waste, and socio-economic issues. In this sense, this review study covers the fundamental principles, process performance, and challenges of the gasification of biomass sourced from food waste by the SCW process. Additionally, it sheds light on advancements in SCW technologies (reactor design, operational conditions, catalysts utilization, etc.). The review explores the availability of food waste biomass, screens its chemical characteristics, and underscores the state-of-the-art methodologies focusing on the conversion of food waste into hydrogen-rich syngas. Thus, it outlines future research and development directions in this field, underscoring the importance of advancing SCW gasification technology for biomass valorization and waste management.

Suggested Citation

  • Costa, João C.B. & Dias, Isabela M. & Mourão, Lucas C. & Souza, Guilherme B.M. de & Pereira, Mariana B. & Freitas, Fernanda F. & Alonso, Christian G., 2025. "Supercritical water gasification of food waste for hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:rensus:v:208:y:2025:i:c:s1364032124008177
    DOI: 10.1016/j.rser.2024.115091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124008177
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.115091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Changqing & Shi, Wenxiao & Hong, Jinglan & Zhang, Fangfang & Chen, Wei, 2015. "Life cycle assessment of food waste-based biogas generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 169-177.
    2. Ramos, Ana & Monteiro, Eliseu & Silva, Valter & Rouboa, Abel, 2018. "Co-gasification and recent developments on waste-to-energy conversion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 380-398.
    3. Ramin Azargohar & Sonil Nanda & He Cheng & Ajay K. Dalai, 2022. "Potential Application of Canola Hull Fuel Pellets for the Production of Synthesis Gas and Hydrogen," Energies, MDPI, vol. 15(22), pages 1-15, November.
    4. Cai, Junmeng & He, Yifeng & Yu, Xi & Banks, Scott W. & Yang, Yang & Zhang, Xingguang & Yu, Yang & Liu, Ronghou & Bridgwater, Anthony V., 2017. "Review of physicochemical properties and analytical characterization of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 309-322.
    5. Wang, Cui & Li, Linfeng & Chen, Yunan & Ge, Zhiwei & Jin, Hui, 2021. "Supercritical water gasification of wheat straw: Composition of reaction products and kinetic study," Energy, Elsevier, vol. 227(C).
    6. Onursal Yakaboylu & John Harinck & K. G. Smit & Wiebren De Jong, 2015. "Supercritical Water Gasification of Biomass: A Literature and Technology Overview," Energies, MDPI, vol. 8(2), pages 1-36, January.
    7. Chen, Zhong & Chen, Hongzhen & Xu, Yuanjian & Hu, Mian & Hu, Zhongting & Wang, Junliang & Pan, Zhiyan, 2023. "Reactor for biomass conversion and waste treatment in supercritical water: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    8. Marcela M. Marcelino & Gary A. Leeke & Guozhan Jiang & Jude A. Onwudili & Carine T. Alves & Delano M. de Santana & Felipe A. Torres & Ednildo A. Torres & Silvio A. B. Vieira de Melo, 2023. "Supercritical Water Gasification of Coconut Shell Impregnated with a Nickel Nanocatalyst: Box–Behnken Design and Process Evaluation," Energies, MDPI, vol. 16(8), pages 1-34, April.
    9. Sandro González-Arias & Abel Zúñiga-Moreno & Ricardo García-Morales & Octavio Elizalde-Solis & Francisco J. Verónico-Sánchez & Sergio O. Flores-Valle, 2021. "Gasification of Psidium guajava L. Waste Using Supercritical Water: Evaluation of Feed Ratio and Moderate Temperatures," Energies, MDPI, vol. 14(9), pages 1-17, April.
    10. Yan, Mi & Liu, Yu & Song, Yucai & Xu, Aiming & Zhu, Gaojun & Jiang, Jiahao & Hantoko, Dwi, 2022. "Comprehensive experimental study on energy conversion of household kitchen waste via integrated hydrothermal carbonization and supercritical water gasification," Energy, Elsevier, vol. 242(C).
    11. Hu, Yulin & Gong, Mengyue & Xing, Xuelian & Wang, Haoyu & Zeng, Yimin & Xu, Chunbao Charles, 2020. "Supercritical water gasification of biomass model compounds: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    12. Yan, Mi & Liu, Jianyong & Yoshikawa, Kunio & Jiang, Jiahao & Zhang, Yan & Zhu, Gaojun & Liu, Yu & Hantoko, Dwi, 2022. "Cascading disposal for food waste by integration of hydrothermal carbonization and supercritical water gasification," Renewable Energy, Elsevier, vol. 186(C), pages 914-926.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dolores Hidalgo & Ana Urueña & Jesús M. Martín-Marroquín & David Díez, 2025. "Integrated Approach for Biomass Conversion Using Thermochemical Routes with Anaerobic Digestion and Syngas Fermentation," Sustainability, MDPI, vol. 17(8), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    2. Su, Hongcai & Yan, Mi & Wang, Shurong, 2022. "Recent advances in supercritical water gasification of biowaste catalyzed by transition metal-based catalysts for hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Feng, Hongyu & Cui, Jintao & Xu, Zhang & Hantoko, Dwi & Zhong, Li & Xu, Donghai & Yan, Mi, 2023. "Sewage sludge treatment via hydrothermal carbonization combined with supercritical water gasification: Fuel production and pollution degradation," Renewable Energy, Elsevier, vol. 210(C), pages 822-831.
    4. Yan, Mi & Liu, Yu & Wen, Xiaoqiang & Yang, Yayong & Cui, Jintao & Chen, Feng & Hantoko, Dwi, 2023. "Effect of operating conditions on hydrothermal liquefaction of kitchen waste with ethanol-water as a co-solvent for bio-oil production," Renewable Energy, Elsevier, vol. 215(C).
    5. Wang, Cui & Jin, Hui, 2024. "Thermodynamic analysis of poly-generation system for gas-biochar-heat-electricity based on supercritical water gasification of biomass waste," Energy, Elsevier, vol. 311(C).
    6. Dong, Runqiu & Jia, Hanbing & Tian, Jianghua & Wu, Liang & Liu, Zhigang & Peng, Zhiyong & Xu, Jialing & Luo, Kui & Jin, Hui & Chen, Bin & Guo, Liejin, 2025. "Thermodynamic analysis and life cycle assessment of the preferred supercritical water gasification coupled system for energy self-sufficiency: From food waste to hydrogen," Energy, Elsevier, vol. 317(C).
    7. Xu, Jialing & Rong, Siqi & Sun, Jingli & Peng, Zhiyong & Jin, Hui & Guo, Liejin & Zhang, Xiang & Zhou, Teng, 2022. "Optimal design of non-isothermal supercritical water gasification reactor: From biomass to hydrogen," Energy, Elsevier, vol. 244(PB).
    8. Shahbeik, Hossein & Peng, Wanxi & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Guillemin, Gilles J. & Fallahi, Alireza & Amiri, Hamid & Rehan, Mohammad & Raikwar, Deepak & Latine, Hannes & Pandalon, 2022. "Synthesis of liquid biofuels from biomass by hydrothermal gasification: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    9. Ramin Azargohar & Sonil Nanda & He Cheng & Ajay K. Dalai, 2022. "Potential Application of Canola Hull Fuel Pellets for the Production of Synthesis Gas and Hydrogen," Energies, MDPI, vol. 15(22), pages 1-15, November.
    10. Kapil Khandelwal & Philip Boahene & Sonil Nanda & Ajay K. Dalai, 2023. "Hydrogen Production from Supercritical Water Gasification of Model Compounds of Crude Glycerol from Biodiesel Industries," Energies, MDPI, vol. 16(9), pages 1-19, April.
    11. Yang, Chuang & Wang, Shuzhong & Xu, Donghai & Chen, Hao & Zhang, Jie & Li, Guoxing, 2025. "Supercritical water gasification of palmitic acid: Products, pathway and kinetics," Renewable Energy, Elsevier, vol. 241(C).
    12. Mohamed Magdeldin & Thomas Kohl & Cataldo De Blasio & Mika Järvinen & Song Won Park & Reinaldo Giudici, 2016. "The BioSCWG Project: Understanding the Trade-Offs in the Process and Thermal Design of Hydrogen and Synthetic Natural Gas Production," Energies, MDPI, vol. 9(10), pages 1-27, October.
    13. Gupta, Diya Sen & Acharya, Sneha & Kishore, Nanda, 2025. "Non-catalytic hydrosolvolysis of Delonix regia biomass waste and analysis of products," Renewable Energy, Elsevier, vol. 245(C).
    14. Shahbeig, Hossein & Nosrati, Mohsen, 2020. "Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    15. Xiao He & Anthony K. Lau & Shahab Sokhansanj, 2019. "Effect of Moisture on Gas Emissions from Stored Woody Biomass," Energies, MDPI, vol. 13(1), pages 1-14, December.
    16. Gabbrielli, Roberto & Barontini, Federica & Frigo, Stefano & Bressan, Luigi, 2022. "Numerical analysis of bio-methane production from biomass-sewage sludge oxy-steam gasification and methanation process," Applied Energy, Elsevier, vol. 307(C).
    17. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    18. Xuejun Qian & Jingwen Xue & Yulai Yang & Seong W. Lee, 2021. "Thermal Properties and Combustion-Related Problems Prediction of Agricultural Crop Residues," Energies, MDPI, vol. 14(15), pages 1-18, July.
    19. Bacenetti, Jacopo & Sala, Cesare & Fusi, Alessandra & Fiala, Marco, 2016. "Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable," Applied Energy, Elsevier, vol. 179(C), pages 669-686.
    20. Cataldo De Blasio & Gabriel Salierno & Andrea Magnano, 2021. "Implications on Feedstock Processing and Safety Issues for Semi-Batch Operations in Supercritical Water Gasification of Biomass," Energies, MDPI, vol. 14(10), pages 1-19, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:208:y:2025:i:c:s1364032124008177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.