IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v191y2024ics1364032123009899.html
   My bibliography  Save this article

A comprehensive review and sensitivity analysis of the factors affecting the performance of buildings equipped with Variable Refrigerant Flow system in Middle East climates

Author

Listed:
  • Saryazdi, Seyed mohammad Ebrahimi
  • Etemad, Alireza
  • Shafaat, Ali
  • Bahman, Ammar M.

Abstract

Variable Refrigerant Flow (VRF) systems are becoming increasingly popular in commercial and residential buildings due to their flexibility and efficiency. Building design and operational parameters play an important role in the process of predicting cooling loads, and these variables contain a variety of uncertainties that must be taken into account when seeking to obtain a reliable prediction. It is common practice to oversize the Heating, Ventilation, and Air Conditioning (HVAC) system installed in a building in order to reduce uncertainties in its performance. However, oversizing is undesirable due to additional capital and operating costs, inefficient space utilization, and excessive emissions of greenhouse gases. This study provided a comprehensive literature review on previous uncertainly analysis studies from six perspectives: classification of uncertainty factors, sensitivity analysis methods, building energy model for uncertainty analysis, sampling method, the most effective parameter, and distribution of uncertainty parameters., and then developed a framework to investigate the effects of uncertainty of operational and design parameters on annual cooling load, total energy consumption, HVAC electricity use per conditioned floor area, VRF system cost, and the cooling-to-total electricity consumption ratio (R) in residential buildings equipped with VRF systems located in the Middle East (ME) region (Kuwait City, Tehran, and Istanbul). Artificial Neural Network (ANN) model was also developed to predict output parameters in residential building. Latin Hypercube Sampling (LHS) simulation was also applied to generate near-random samples of uncertainty parameter values from a multidimensional distribution. It should be mentioned that a correlation was derived in this study to predict VRF cost. The study evaluated thirteen uncertainty parameters related to building characteristics, occupants, building energy systems, VRF variables, and lighting conditions. Several methods were used to evaluate the effects of input uncertainty parameters on the output variables, namely, the Standardized Regression Coefficient (SRC), Partial Correlation Coefficient (PCC), and Spearman Rank Correlation Coefficient (SRCC) or Pearson Product-Moment Correlation Coefficient (PPMCC). The results indicated that VRF cost and HVAC electricity use per area have a greater coefficient of variation compared with other output parameters. The density distribution of output parameters indicated that uncertainty parameters had the greatest impact on output parameters in Kuwait (hyper arid climate), whereas in Istanbul (humid subtropical climate), they were the least. Among the variables examined in the Sensitivity Analysis (SA), cooling setpoint had the greatest impact on residential building energy consumption in ME climates. Finally, this paper highlights emerging trends and offers recommendations for advancing future research in the realm of building energy uncertainty analysis.

Suggested Citation

  • Saryazdi, Seyed mohammad Ebrahimi & Etemad, Alireza & Shafaat, Ali & Bahman, Ammar M., 2024. "A comprehensive review and sensitivity analysis of the factors affecting the performance of buildings equipped with Variable Refrigerant Flow system in Middle East climates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:rensus:v:191:y:2024:i:c:s1364032123009899
    DOI: 10.1016/j.rser.2023.114131
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123009899
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.114131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Copiello, Sergio & Gabrielli, Laura & Bonifaci, Pietro, 2017. "Evaluation of energy retrofit in buildings under conditions of uncertainty: The prominence of the discount rate," Energy, Elsevier, vol. 137(C), pages 104-117.
    2. Tian, Wei & Heo, Yeonsook & de Wilde, Pieter & Li, Zhanyong & Yan, Da & Park, Cheol Soo & Feng, Xiaohang & Augenbroe, Godfried, 2018. "A review of uncertainty analysis in building energy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 285-301.
    3. Jing Zhao & Yaoqi Duan & Xiaojuan Liu, 2018. "Uncertainty Analysis of Weather Forecast Data for Cooling Load Forecasting Based on the Monte Carlo Method," Energies, MDPI, vol. 11(7), pages 1-18, July.
    4. Li, Hangxin & Wang, Shengwei & Tang, Rui, 2019. "Robust optimal design of zero/low energy buildings considering uncertainties and the impacts of objective functions," Applied Energy, Elsevier, vol. 254(C).
    5. Shamsi, Mohammad Haris & Ali, Usman & Mangina, Eleni & O’Donnell, James, 2020. "A framework for uncertainty quantification in building heat demand simulations using reduced-order grey-box energy models," Applied Energy, Elsevier, vol. 275(C).
    6. Storlie, Curtis B. & Swiler, Laura P. & Helton, Jon C. & Sallaberry, Cedric J., 2009. "Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1735-1763.
    7. Aïssani, A. & Chateauneuf, A. & Fontaine, J.-P. & Audebert, Ph., 2016. "Quantification of workmanship insulation defects and their impact on the thermal performance of building facades," Applied Energy, Elsevier, vol. 165(C), pages 272-284.
    8. Tian, Wei, 2013. "A review of sensitivity analysis methods in building energy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 411-419.
    9. Pang, Zhihong & O'Neill, Zheng, 2018. "Uncertainty quantification and sensitivity analysis of the domestic hot water usage in hotels," Applied Energy, Elsevier, vol. 232(C), pages 424-442.
    10. Helton, J.C. & Johnson, J.D. & Sallaberry, C.J. & Storlie, C.B., 2006. "Survey of sampling-based methods for uncertainty and sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1175-1209.
    11. Manfren, Massimiliano & Aste, Niccolò & Moshksar, Reza, 2013. "Calibration and uncertainty analysis for computer models – A meta-model based approach for integrated building energy simulation," Applied Energy, Elsevier, vol. 103(C), pages 627-641.
    12. Li, Xiwang & Malkawi, Ali, 2016. "Multi-objective optimization for thermal mass model predictive control in small and medium size commercial buildings under summer weather conditions," Energy, Elsevier, vol. 112(C), pages 1194-1206.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    2. Aurora Greta Ruggeri & Laura Gabrielli & Massimiliano Scarpa, 2020. "Energy Retrofit in European Building Portfolios: A Review of Five Key Aspects," Sustainability, MDPI, vol. 12(18), pages 1-38, September.
    3. Scarpa, Federico & Tagliafico, Luca A. & Bianco, Vincenzo, 2021. "Financial and energy performance analysis of efficiency measures in residential buildings. A probabilistic approach," Energy, Elsevier, vol. 236(C).
    4. Zhan, Sicheng & Chong, Adrian, 2021. "Data requirements and performance evaluation of model predictive control in buildings: A modeling perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    5. Tatsuya Sakurahara & Seyed Reihani & Ernie Kee & Zahra Mohaghegh, 2020. "Global importance measure methodology for integrated probabilistic risk assessment," Journal of Risk and Reliability, , vol. 234(2), pages 377-396, April.
    6. Su, Ziyi & Li, Xiaofeng, 2022. "Extraction of key parameters and simplification of sub-system energy models using sensitivity analysis in subway stations," Energy, Elsevier, vol. 261(PA).
    7. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "Impact of adjustment strategies on building design process in different climates oriented by multiple performance," Applied Energy, Elsevier, vol. 266(C).
    8. Wei, Pengfei & Lu, Zhenzhou & Song, Jingwen, 2015. "Variable importance analysis: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 399-432.
    9. Tian, Wei & Heo, Yeonsook & de Wilde, Pieter & Li, Zhanyong & Yan, Da & Park, Cheol Soo & Feng, Xiaohang & Augenbroe, Godfried, 2018. "A review of uncertainty analysis in building energy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 285-301.
    10. Prataviera, Enrico & Vivian, Jacopo & Lombardo, Giulia & Zarrella, Angelo, 2022. "Evaluation of the impact of input uncertainty on urban building energy simulations using uncertainty and sensitivity analysis," Applied Energy, Elsevier, vol. 311(C).
    11. Chen, Jianli & Gao, Xinghua & Hu, Yuqing & Zeng, Zhaoyun & Liu, Yanan, 2019. "A meta-model-based optimization approach for fast and reliable calibration of building energy models," Energy, Elsevier, vol. 188(C).
    12. Wu, Di & Zhang, Taoyuan & Zhang, Jiqiang & Lv, Hongyi & Yue, Chao & Fu, Mengze, 2024. "Sensitivity analysis and multiobjective optimization for rural house retrofitting considering construction and occupant behavior uncertainty: A case study of Jiaxian, China," Applied Energy, Elsevier, vol. 360(C).
    13. Zhou, Yuekuan & Zheng, Siqian, 2020. "Uncertainty study on thermal and energy performances of a deterministic parameters based optimal aerogel glazing system using machine-learning method," Energy, Elsevier, vol. 193(C).
    14. Helton, Jon C. & Johnson, Jay D. & Sallaberry, Cédric J., 2011. "Quantification of margins and uncertainties: Example analyses from reactor safety and radioactive waste disposal involving the separation of aleatory and epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1014-1033.
    15. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost," Energy, Elsevier, vol. 192(C).
    16. Østergård, Torben & Jensen, Rasmus Lund & Maagaard, Steffen Enersen, 2018. "A comparison of six metamodeling techniques applied to building performance simulations," Applied Energy, Elsevier, vol. 211(C), pages 89-103.
    17. Zio, E. & Pedroni, N., 2012. "Monte Carlo simulation-based sensitivity analysis of the model of a thermal–hydraulic passive system," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 90-106.
    18. Zhang, Hu & Tian, Wei & Tan, Jingyuan & Yin, Juchao & Fu, Xing, 2024. "Sensitivity analysis of multiple time-scale building energy using Bayesian adaptive spline surfaces," Applied Energy, Elsevier, vol. 363(C).
    19. Ramos Ruiz, Germán & Fernández Bandera, Carlos & Gómez-Acebo Temes, Tomás & Sánchez-Ostiz Gutierrez, Ana, 2016. "Genetic algorithm for building envelope calibration," Applied Energy, Elsevier, vol. 168(C), pages 691-705.
    20. Helton, Jon C. & Brooks, Dusty M. & Sallaberry, Cédric J., 2020. "Margins associated with loss of assured safety for systems with multiple weak links and strong links," Reliability Engineering and System Safety, Elsevier, vol. 195(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:191:y:2024:i:c:s1364032123009899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.