IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v191y2024ics1364032123009899.html
   My bibliography  Save this article

A comprehensive review and sensitivity analysis of the factors affecting the performance of buildings equipped with Variable Refrigerant Flow system in Middle East climates

Author

Listed:
  • Saryazdi, Seyed mohammad Ebrahimi
  • Etemad, Alireza
  • Shafaat, Ali
  • Bahman, Ammar M.

Abstract

Variable Refrigerant Flow (VRF) systems are becoming increasingly popular in commercial and residential buildings due to their flexibility and efficiency. Building design and operational parameters play an important role in the process of predicting cooling loads, and these variables contain a variety of uncertainties that must be taken into account when seeking to obtain a reliable prediction. It is common practice to oversize the Heating, Ventilation, and Air Conditioning (HVAC) system installed in a building in order to reduce uncertainties in its performance. However, oversizing is undesirable due to additional capital and operating costs, inefficient space utilization, and excessive emissions of greenhouse gases. This study provided a comprehensive literature review on previous uncertainly analysis studies from six perspectives: classification of uncertainty factors, sensitivity analysis methods, building energy model for uncertainty analysis, sampling method, the most effective parameter, and distribution of uncertainty parameters., and then developed a framework to investigate the effects of uncertainty of operational and design parameters on annual cooling load, total energy consumption, HVAC electricity use per conditioned floor area, VRF system cost, and the cooling-to-total electricity consumption ratio (R) in residential buildings equipped with VRF systems located in the Middle East (ME) region (Kuwait City, Tehran, and Istanbul). Artificial Neural Network (ANN) model was also developed to predict output parameters in residential building. Latin Hypercube Sampling (LHS) simulation was also applied to generate near-random samples of uncertainty parameter values from a multidimensional distribution. It should be mentioned that a correlation was derived in this study to predict VRF cost. The study evaluated thirteen uncertainty parameters related to building characteristics, occupants, building energy systems, VRF variables, and lighting conditions. Several methods were used to evaluate the effects of input uncertainty parameters on the output variables, namely, the Standardized Regression Coefficient (SRC), Partial Correlation Coefficient (PCC), and Spearman Rank Correlation Coefficient (SRCC) or Pearson Product-Moment Correlation Coefficient (PPMCC). The results indicated that VRF cost and HVAC electricity use per area have a greater coefficient of variation compared with other output parameters. The density distribution of output parameters indicated that uncertainty parameters had the greatest impact on output parameters in Kuwait (hyper arid climate), whereas in Istanbul (humid subtropical climate), they were the least. Among the variables examined in the Sensitivity Analysis (SA), cooling setpoint had the greatest impact on residential building energy consumption in ME climates. Finally, this paper highlights emerging trends and offers recommendations for advancing future research in the realm of building energy uncertainty analysis.

Suggested Citation

  • Saryazdi, Seyed mohammad Ebrahimi & Etemad, Alireza & Shafaat, Ali & Bahman, Ammar M., 2024. "A comprehensive review and sensitivity analysis of the factors affecting the performance of buildings equipped with Variable Refrigerant Flow system in Middle East climates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:rensus:v:191:y:2024:i:c:s1364032123009899
    DOI: 10.1016/j.rser.2023.114131
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123009899
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.114131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:191:y:2024:i:c:s1364032123009899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.