IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v189y2024ipas1364032123007402.html
   My bibliography  Save this article

Review of enhancing boiling and condensation heat transfer: Surface modification

Author

Listed:
  • Qin, Siyu
  • Ji, Ruiyang
  • Miao, Chengyu
  • Jin, Liwen
  • Yang, Chun
  • Meng, Xiangzhao

Abstract

Data centers have tended to develop towards large scale and high density, with overall power consumption reaching up to 3 % of the total national electricity consumption. It is vital to establish energy-efficient electronic cooling devices for data center improvement. Phase-change heat transfer has emerged as a highly efficient method for addressing the heat dissipation problem. As the demand for micro-electronic cooling devices grows, enhancing the phase-change heat transfer has been a key focus of engineering research for several decades. Surface modification can effectively facilitate heat transfer favored by the surface area expansion and free energy transition. This review delved into the multiple processes involved in phase-change heat transfer, containing boiling and condensation. Considering the surface roughness and free energy, the wettability theories and manipulations of hydrophilic and hydrophobic surfaces were presented. The fabrication techniques available for modified surfaces mainly comprise coating, etching, template, sol-gen, and layer-by-layer assembly methods. The effects of patterned surface, wettability gradient surface, electrowetting surface, and wettability controllable surface on phase-change heat transfer enhancement were elaborated, particularly for the critical heat flux and heat transfer coefficients. This review of experimental and simulation results showed that surface wettability modification possesses a promising prospect in improving heat transfer performance. In this review, recommendations for the design of surface modification to promote the development of energy-efficient technologies in specific artificial environments were proposed. Further theoretical and experimental efforts need to create novel surfaces that can facilitate high-performance phase-change heat transfer across a range of applications.

Suggested Citation

  • Qin, Siyu & Ji, Ruiyang & Miao, Chengyu & Jin, Liwen & Yang, Chun & Meng, Xiangzhao, 2024. "Review of enhancing boiling and condensation heat transfer: Surface modification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
  • Handle: RePEc:eee:rensus:v:189:y:2024:i:pa:s1364032123007402
    DOI: 10.1016/j.rser.2023.113882
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123007402
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113882?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Shuai & Feng, Daili & Shi, Lei & Wang, Li & Jin, Yingai & Tian, Limei & Li, Ziyuan & Wang, Guoyong & Zhao, Lei & Yan, Yuying, 2021. "A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Zhang, P. & Lv, F.Y., 2015. "A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications," Energy, Elsevier, vol. 82(C), pages 1068-1087.
    4. Mousa, Mohamed H. & Yang, Cheng-Min & Nawaz, Kashif & Miljkovic, Nenad, 2022. "Review of heat transfer enhancement techniques in two-phase flows for highly efficient and sustainable cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    5. Hamidi, E. & Ganesan, P.B. & Sharma, R.K. & Yong, K.W., 2023. "Computational study of heat transfer enhancement using porous foams with phase change materials: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    6. Yuan, Xiao & Du, Yanping & Su, Jing, 2022. "Approaches and potentials for pool boiling enhancement with superhigh heat flux on responsive smart surfaces: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    7. Mohanty, Rajiva Lochan & Das, Mihir Kumar, 2017. "A critical review on bubble dynamics parameters influencing boiling heat transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 466-494.
    8. Li, Wei & Dai, Renkun & Zeng, Min & Wang, Qiuwang, 2020. "Review of two types of surface modification on pool boiling enhancement: Passive and active," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    9. Xin, Fei & Ma, Ting & Wang, Qiuwang, 2018. "Thermal performance analysis of flat heat pipe with graded mini-grooves wick," Applied Energy, Elsevier, vol. 228(C), pages 2129-2139.
    10. Yuki Kameya & Ryota Osonoe & Yuto Anjo, 2020. "Hydrophilic Coating of Copper Particle Monolayer Wicks for Enhanced Passive Water Transport," Energies, MDPI, vol. 13(12), pages 1-10, June.
    11. Xiaolong Ma & Zhongchao Zhao & Pengpeng Jiang & Shan Yang & Shilin Li & Xudong Chen, 2020. "Investigation of Start-Up Characteristics of Thermosyphons Modified with Different Hydrophilic and Hydrophobic Inner Surfaces," Energies, MDPI, vol. 13(3), pages 1-16, February.
    12. Cui, Wei & Si, Tianyu & Li, Xiangxuan & Li, Xinyi & Lu, Lin & Ma, Ting & Wang, Qiuwang, 2022. "Heat transfer enhancement of phase change materials embedded with metal foam for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    13. Leng, Ziyu & Yuan, Yanping & Cao, Xiaoling & Zeng, Chao & Zhong, Wei & Gao, Bo, 2022. "Heat pipe/phase change material thermal management of Li-ion power battery packs: A numerical study on coupled heat transfer performance," Energy, Elsevier, vol. 240(C).
    14. Zhao, Yanqi & Zou, Boyang & Zhang, Tongtong & Jiang, Zhu & Ding, Jianning & Ding, Yulong, 2022. "A comprehensive review of composite phase change material based thermal management system for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    15. Tang, Heng & Tang, Yong & Wan, Zhenping & Li, Jie & Yuan, Wei & Lu, Longsheng & Li, Yong & Tang, Kairui, 2018. "Review of applications and developments of ultra-thin micro heat pipes for electronic cooling," Applied Energy, Elsevier, vol. 223(C), pages 383-400.
    16. Carroll, P. & Chesser, M. & Lyons, P., 2020. "Air Source Heat Pumps field studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    17. Sun, Yalong & Tang, Yong & Zhang, Shiwei & Yuan, Wei & Tang, Heng, 2022. "A review on fabrication and pool boiling enhancement of three-dimensional complex structures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    18. Jafari, Davoud & Franco, Alessandro & Filippeschi, Sauro & Di Marco, Paolo, 2016. "Two-phase closed thermosyphons: A review of studies and solar applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 575-593.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jiyan & Long, Yong & Jing, Yanju & Zhang, Jiaqing & Du, Silu & Jiao, Rui & Sun, Hanxue & Zhu, Zhaoqi & Liang, Weidong & Li, An, 2024. "Superhydrophobic multi-shell hollow microsphere confined phase change materials for solar photothermal conversion and energy storage," Applied Energy, Elsevier, vol. 365(C).
    2. Bogdan Diaconu & Mihai Cruceru & Lucica Anghelescu & Cristinel Racoceanu & Cristinel Popescu & Marian Ionescu & Adriana Tudorache, 2023. "Latent Heat Storage Systems for Thermal Management of Electric Vehicle Batteries: Thermal Performance Enhancement and Modulation of the Phase Transition Process Dynamics: A Literature Review," Energies, MDPI, vol. 16(6), pages 1-46, March.
    3. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    5. Chen, Gong & Fan, Dongqiang & Zhang, Shiwei & Sun, Yalong & Zhong, Guisheng & Wang, Zhiwei & Wan, Zhenpin & Tang, Yong, 2021. "Wicking capability evaluation of multilayer composite micromesh wicks for ultrathin two-phase heat transfer devices," Renewable Energy, Elsevier, vol. 163(C), pages 921-929.
    6. Xu, Nian & Liu, Zilong & Yu, Xinyu & Gao, Jian & Chu, Huaqiang, 2024. "Processes, models and the influencing factors for enhanced boiling heat transfer in porous structures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    7. Nandy, Aditi & Houl, Yassine & Zhao, Weihuan & D'Souza, Nandika Anne, 2023. "Thermal heat transfer and energy modeling through incorporation of phase change materials (PCMs) into polyurethane foam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    8. Hamidi, E. & Ganesan, P.B. & Sharma, R.K. & Yong, K.W., 2023. "Computational study of heat transfer enhancement using porous foams with phase change materials: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    9. Tang, Heng & Xia, Liangfeng & Tang, Yong & Weng, Changxing & Hu, Zuohuan & Wu, Xiaoyu & Sun, Yalong, 2022. "Fabrication and pool boiling performance assessment of microgroove array surfaces with secondary micro-structures for high power applications," Renewable Energy, Elsevier, vol. 187(C), pages 790-800.
    10. Peacock, Malcolm & Fragaki, Aikaterini & Matuszewski, Bogdan J, 2023. "The impact of heat electrification on the seasonal and interannual electricity demand of Great Britain," Applied Energy, Elsevier, vol. 337(C).
    11. Yang, Sheng & Shao, Xue-Feng & Luo, Jia-Hao & Baghaei Oskouei, Seyedmohsen & Bayer, Özgür & Fan, Li-Wu, 2023. "A novel cascade latent heat thermal energy storage system consisting of erythritol and paraffin wax for deep recovery of medium-temperature industrial waste heat," Energy, Elsevier, vol. 265(C).
    12. Sedmak, Ivan & Urbančič, Iztok & Podlipec, Rok & Štrancar, Janez & Mortier, Michel & Golobič, Iztok, 2016. "Submicron thermal imaging of a nucleate boiling process using fluorescence microscopy," Energy, Elsevier, vol. 109(C), pages 436-445.
    13. Huo, Ying-Jie & Yan, Ting & Wu, Shao-Fei & Kuai, Zi-Han & Pan, Wei-Guo, 2024. "Preparation and thermal properties of palmitic acid/copper foam phase change materials," Energy, Elsevier, vol. 293(C).
    14. Xiang Gou & Qiyan Zhang & Yamei Li & Yingfan Liu & Shian Liu & Saima Iram, 2018. "Experimental Research on the Thermal Performance and Semi-Visualization of Rectangular Flat Micro-Grooved Gravity Heat Pipes," Energies, MDPI, vol. 11(9), pages 1-12, September.
    15. Jéssica Martha Nunes & Jeferson Diehl de Oliveira & Jacqueline Biancon Copetti & Sameer Sheshrao Gajghate & Utsab Banerjee & Sushanta K. Mitra & Elaine Maria Cardoso, 2023. "Thermal Performance Analysis of Micro Pin Fin Heat Sinks under Different Flow Conditions," Energies, MDPI, vol. 16(7), pages 1-13, March.
    16. Giovanni Murano & Francesca Caffari & Nicolandrea Calabrese, 2024. "Energy Potential of Existing Reversible Air-to-Air Heat Pumps for Residential Heating," Sustainability, MDPI, vol. 16(14), pages 1-23, July.
    17. Rafal Andrzejczyk, 2018. "Experimental Investigation of the Thermal Performance of a Wickless Heat Pipe Operating with Different Fluids: Water, Ethanol, and SES36. Analysis of Influences of Instability Processes at Working Ope," Energies, MDPI, vol. 12(1), pages 1-28, December.
    18. Dorota Chwieduk & Bartosz Chwieduk, 2023. "Application of Heat Pumps in New Housing Estates in Cities Suburbs as an Means of Energy Transformation in Poland," Energies, MDPI, vol. 16(8), pages 1-19, April.
    19. Zhang, Lu & Liu, Jie & Du, Shaojie & Zhao, Chen, 2024. "Multiphase flow dynamics in metal foam proton exchange membrane fuel cell," Renewable Energy, Elsevier, vol. 226(C).
    20. Chen, Gong & Tang, Yong & Duan, Longhua & Tang, Heng & Zhong, Guisheng & Wan, Zhenping & Zhang, Shiwei & Fu, Ting, 2020. "Thermal performance enhancement of micro-grooved aluminum flat plate heat pipes applied in solar collectors," Renewable Energy, Elsevier, vol. 146(C), pages 2234-2242.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:189:y:2024:i:pa:s1364032123007402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.