IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v186y2023ics136403212300518x.html
   My bibliography  Save this article

To pick (or not to pick) the high-hanging fruits: Cleaner production audits and firm total factor energy efficiency

Author

Listed:
  • Chen, Zhen
  • Zhou, Lihua
  • Jia, Ce
  • Guo, Xiaodan

Abstract

The “low-hanging fruits” measures that easily and quickly reduced pollution and energy intensity over the past decades are now giving rise to issues. Cleaner production may provide new opportunities to gain the “high-hanging fruits”—more challenging or costly actions that have greater environmental and energy benefits but require advanced technologies or management for implementation. This study provides empirical evidence on the effects of cleaner production audits (CPAs) on Chinese manufacturing firms' total factor energy efficiency (TFEE), whose enhancement synergizes climate mitigation and green productivity growth. The study analyzes the effects of CPAs by employing a staggered difference-in-difference strategy combined with propensity score matching to compare samples of treated and untreated industrial firms for the period of 2000–2014. The findings show that regulated firms experience a 10.4% increase in TFEE. The contributions of green pure technical efficiency and green technical progress are 7.9% and 2.7%, respectively. Additionally, non-heavy polluters, small firms, and private firms demonstrate the greatest improvements in TFEE. However, CPAs do not significantly impact the TFEE of firms with high dependence on fossil energy. Finally, the mechanism analyses demonstrate that inner resource allocation optimization may be the main solution for improving TFEE by enhancing green pure technical efficiency. Green technological innovations in energy alternatives are the most promising paths for increasing TFEE by promoting green technical progress. These findings illuminate how manufacturing firms pick the “high-hanging fruits” of energy efficiency in more cost-effective ways and suggest useful insights for cleaner production promotion.

Suggested Citation

  • Chen, Zhen & Zhou, Lihua & Jia, Ce & Guo, Xiaodan, 2023. "To pick (or not to pick) the high-hanging fruits: Cleaner production audits and firm total factor energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:rensus:v:186:y:2023:i:c:s136403212300518x
    DOI: 10.1016/j.rser.2023.113661
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212300518X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113661?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Becker, Randy A., 2011. "Local environmental regulation and plant-level productivity," Ecological Economics, Elsevier, vol. 70(12), pages 2516-2522.
    2. Hancevic, Pedro Ignacio, 2016. "Environmental regulation and productivity: The case of electricity generation under the CAAA-1990," Energy Economics, Elsevier, vol. 60(C), pages 131-143.
    3. Charles J. Hadlock & Joshua R. Pierce, 2010. "New Evidence on Measuring Financial Constraints: Moving Beyond the KZ Index," The Review of Financial Studies, Society for Financial Studies, vol. 23(5), pages 1909-1940.
    4. Powell, David & Goldman, Dana, 2021. "Disentangling moral hazard and adverse selection in private health insurance," Journal of Econometrics, Elsevier, vol. 222(1), pages 141-160.
    5. Becker, Randy A., 2011. "Local environmental regulation and plant-level productivity," Ecological Economics, Elsevier, vol. 70(12), pages 2516-2522.
    6. Wu, Haitao & Hao, Yu & Ren, Siyu, 2020. "How do environmental regulation and environmental decentralization affect green total factor energy efficiency: Evidence from China," Energy Economics, Elsevier, vol. 91(C).
    7. Haider, Salman & Mishra, Prajna Paramita, 2021. "Does innovative capability enhance the energy efficiency of Indian Iron and Steel firms? A Bayesian stochastic frontier analysis," Energy Economics, Elsevier, vol. 95(C).
    8. Manello, Alessandro, 2017. "Productivity growth, environmental regulation and win–win opportunities: The case of chemical industry in Italy and Germany," European Journal of Operational Research, Elsevier, vol. 262(2), pages 733-743.
    9. Li, Zhenghui & Huang, Zimei & Su, Yaya, 2023. "New media environment, environmental regulation and corporate green technology innovation:Evidence from China," Energy Economics, Elsevier, vol. 119(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rongbing Huang & Xiaomin Zou, 2025. "Accountability audits of natural resources and industrial green total factor productivity: evidence from China," Palgrave Communications, Palgrave Macmillan, vol. 12(1), pages 1-17, December.
    2. Xu, Aiting & Song, Miaoyuan & Wu, Yunguang & Luo, Yifan & Zhu, Yuhan & Qiu, Keyang, 2024. "Effects of new urbanization on China's carbon emissions: A quasi-natural experiment based on the improved PSM-DID model," Technological Forecasting and Social Change, Elsevier, vol. 200(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Minzhe & Liu, Yunxiao & Wang, Bing & Lee, Myunghun & Zhang, Ning, 2021. "The sources of regulated productivity in Chinese power plants: An estimation of the restricted cost function combined with DEA approach," Energy Economics, Elsevier, vol. 100(C).
    2. Guo, Shu & Zhang, ZhongXiang, 2023. "Green credit policy and total factor productivity: Evidence from Chinese listed companies," Energy Economics, Elsevier, vol. 128(C).
    3. Zhang, Dongyang & Bai, Dingchuan & He, Yurun & Sun, Qiaobing, 2024. "Synergistic abatement effects of Broadband China and environmental regulation: Firm-level evidence," International Review of Financial Analysis, Elsevier, vol. 96(PB).
    4. Jiamin Liu & Xiaoyu Ma & Bin Zhao & Qi Cui & Sisi Zhang & Jiaoning Zhang, 2023. "Mandatory Environmental Regulation, Enterprise Labor Demand and Green Innovation Transformation: A Quasi-Experiment from China’s New Environmental Protection Law," Sustainability, MDPI, vol. 15(14), pages 1-31, July.
    5. Sangeeta Bansal & Massimo Filippini & Suchita Srinivasan, 2023. "How Regulation Might Fail to Reduce Energy Consumption While Still Stimulating Total Factor Productivity Growth," CER-ETH Economics working paper series 23/379, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    6. Lena, Daniela & Pasurka, Carl A. & Cucculelli, Marco, 2022. "Environmental regulation and green productivity growth: Evidence from Italian manufacturing industries," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    7. Zhuanlan Sun & Demi Zhu, 2023. "Investigating environmental regulation effects on technological innovation: A meta-regression analysis," Energy & Environment, , vol. 34(3), pages 463-492, May.
    8. Mian Yang & Yining Yuan & Fuxia Yang & Dalia Patino-Echeverri, 2021. "Effects of environmental regulation on firm entry and exit and China’s industrial productivity: a new perspective on the Porter Hypothesis," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(4), pages 915-944, October.
    9. Lei Jiang & Yuan Chen & Bo Zhang, 2023. "Revisiting the Impact of Environmental Regulation on Green Total Factor Productivity in China: Based on a Comprehensive Index of Environmental Regulation from a Spatiotemporal Heterogeneity Perspectiv," IJERPH, MDPI, vol. 20(2), pages 1-17, January.
    10. Jie Tao & Weidong Cao & Yebing Fang & Yujie Liu & Xueyan Wang & Haipeng Wei, 2022. "Spatiotemporal Differences and Spatial Spillovers of China’s Green Manufacturing under Environmental Regulation," IJERPH, MDPI, vol. 19(19), pages 1-20, September.
    11. Li, Ke & Zou, Danyu & Li, Hailing, 2023. "Environmental regulation and green technical efficiency: A process-level data envelopment analysis from Chinese iron and steel enterprises," Energy, Elsevier, vol. 277(C).
    12. Yuanbin Xu & Haiqing Yu & Xin Zeng & Xinmin Zhang, 2023. "Impacts of environmental regulation on innovation in the context of the Internet," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 13281-13303, November.
    13. Katie Jo Black & Shawn J. McCoy & Jeremy G. Weber, 2018. "When Externalities Are Taxed: The Effects and Incidence of Pennsylvania’s Impact Fee on Shale Gas Wells," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(1), pages 107-153.
    14. Themann, Michael & Koch, Nicolas, 2021. "Catching up and falling behind: Cross-country evidence on the impact of the EU ETS on firm productivity," Ruhr Economic Papers 904, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    15. Johan Brolund & Robert Lundmark, 2017. "Effect of Environmental Regulation Stringency on the Pulp and Paper Industry," Sustainability, MDPI, vol. 9(12), pages 1-16, December.
    16. Tang, Maogang & Li, Xiuzhen & Zhang, Yun & Wu, Yingtao & Wu, Baijun, 2020. "From command-and-control to market-based environmental policies: Optimal transition timing and China’s heterogeneous environmental effectiveness," Economic Modelling, Elsevier, vol. 90(C), pages 1-10.
    17. Becker, Randy A. & Pasurka, Carl & Shadbegian, Ronald J., 2013. "Do environmental regulations disproportionately affect small businesses? Evidence from the Pollution Abatement Costs and Expenditures survey," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 523-538.
    18. Haiying Shao & Bowen Li & Yanjun Jiang, 2023. "Effect and Mechanism of Environmental Decentralization on Pollution Emission from Pig Farming—Evidence from China," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
    19. Pedro Naso & Yi Huang Author Name: Tim Swanson, 2017. "The Porter Hypothesis Goes to China: Spatial Development, Environmental Regulation and Productivity," CIES Research Paper series 53-2017, Centre for International Environmental Studies, The Graduate Institute.
    20. Xu, Le & Yang, Lili & Li, Ding & Shao, Shuai, 2023. "Asymmetric effects of heterogeneous environmental standards on green technology innovation: Evidence from China," Energy Economics, Elsevier, vol. 117(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:186:y:2023:i:c:s136403212300518x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.