IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v16y2012i3p1762-1778.html
   My bibliography  Save this article

Impact of alternative fuel properties on fuel spray behavior and atomization

Author

Listed:
  • Pandey, Rajesh Kumar
  • Rehman, A.
  • Sarviya, R.M.

Abstract

In order to verify and solve the problem of NOx and PM emissions, it is necessary to directly observe the internal combustion chamber of a diesel engine. Many studies have been performed in recent years to verify the macroscopic and microscopic behavior of the injected fuel spray because observing it is not easy due to the difficulties of the experiment. Researchers have investigated the spray characteristics for various diesel injector nozzles over a wide range of temperatures and pressure, but there is lack of evaluation for the spray characteristics for biodiesel. At a time when rapid rise of fuel prices and depleting hydrocarbon resources of the world have forced us to look for alternative fuels biodiesel produced by transesterification of non-edible vegetable oils is promising to be an important additive/substitute to petro diesel. Biodiesel being an oxygenated and sulfur-free fuel leads to more complete combustion and lower emissions. But, the energy content or net calorific value of biodiesel is less than that of diesel fuel; also it has higher viscosity and density, than diesel fuel. A considerable improvement in these properties can be obtained by mixing diesel and biodiesel and then using the blends. Biodiesel and biodiesel/petro diesel blends, with their higher lubricity levels, are increasingly being utilized as an alternative. Present paper analyzed the correlation of injection parameters that will affect the spray characteristics of biodiesel. Observations for analyzing the effect of injection parameters on spray cone angle, break up length and fuel penetration were made. Finally the performance and emissions tests were studied. Atomization and vaporization of fuel are greatly influenced by viscosity and density of fuel and these properties are temperature dependent. Thus fuel inlet temperature plays a very important role in fuel atomization process. At higher temperature viscosity of fuel decreases which enhances the atomization of biofuels.

Suggested Citation

  • Pandey, Rajesh Kumar & Rehman, A. & Sarviya, R.M., 2012. "Impact of alternative fuel properties on fuel spray behavior and atomization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1762-1778.
  • Handle: RePEc:eee:rensus:v:16:y:2012:i:3:p:1762-1778
    DOI: 10.1016/j.rser.2011.11.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032111005466
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2011.11.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karaosmanoǧlu, F & Kurt, G & Özaktaş, T, 2000. "Long term CI engine test of sunflower oil," Renewable Energy, Elsevier, vol. 19(1), pages 219-221.
    2. Pugazhvadivu, M. & Jeyachandran, K., 2005. "Investigations on the performance and exhaust emissions of a diesel engine using preheated waste frying oil as fuel," Renewable Energy, Elsevier, vol. 30(14), pages 2189-2202.
    3. Agarwal, Avinash Kumar & Rajamanoharan, K., 2009. "Experimental investigations of performance and emissions of Karanja oil and its blends in a single cylinder agricultural diesel engine," Applied Energy, Elsevier, vol. 86(1), pages 106-112, January.
    4. Bari, S. & Lim, T.H. & Yu, C.W., 2002. "Effects of preheating of crude palm oil (CPO) on injection system, performance and emission of a diesel engine," Renewable Energy, Elsevier, vol. 27(3), pages 339-351.
    5. Nwafor, O.M.I, 2003. "The effect of elevated fuel inlet temperature on performance of diesel engine running on neat vegetable oil at constant speed conditions," Renewable Energy, Elsevier, vol. 28(2), pages 171-181.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liaquat, A.M. & Masjuki, H.H. & Kalam, M.A. & Fazal, M.A. & Khan, Abdul Faheem & Fayaz, H. & Varman, M., 2013. "Impact of palm biodiesel blend on injector deposit formation," Applied Energy, Elsevier, vol. 111(C), pages 882-893.
    2. Palash, S.M. & Kalam, M.A. & Masjuki, H.H. & Masum, B.M. & Rizwanul Fattah, I.M. & Mofijur, M., 2013. "Impacts of biodiesel combustion on NOx emissions and their reduction approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 473-490.
    3. Zhang, Qiankun & Xia, Jin & Wang, Jianping & He, Zhuoyao & Zhao, Wenbin & Qian, Yong & Zheng, Liang & Liu, Rui & Lu, Xingcai, 2022. "Experimental study on ignition and combustion characteristics of biodiesel-butanol blends at different injection pressures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    4. Kumar, Pravin & Rehman, A., 2016. "Bio-diesel in homogeneous charge compression ignition (HCCI) combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 536-550.
    5. Varatharajan, K. & Cheralathan, M., 2012. "Influence of fuel properties and composition on NOx emissions from biodiesel powered diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3702-3710.
    6. Diener, Stefan & Semiyaga, Swaib & Niwagaba, Charles B. & Muspratt, Ashley Murray & Gning, Jean Birane & Mbéguéré, Mbaye & Ennin, Joseph Effah & Zurbrugg, Christian & Strande, Linda, 2014. "A value proposition: Resource recovery from faecal sludge—Can it be the driver for improved sanitation?," Resources, Conservation & Recycling, Elsevier, vol. 88(C), pages 32-38.
    7. Agarwal, Avinash Kumar & Katiyar, Vikas & Singh, Kushagra, 2016. "Optimisation of Karanja/Jatropha-Methanol emulsification variables and their engine evaluation," Renewable Energy, Elsevier, vol. 96(PA), pages 433-441.
    8. Shah, Pinkesh R. & Gaitonde, U.N. & Ganesh, Anuradda, 2018. "Influence of soy-lecithin as bio-additive with straight vegetable oil on CI engine characteristics," Renewable Energy, Elsevier, vol. 115(C), pages 685-696.
    9. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2012. "The effects of water on biodiesel production and refining technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3456-3470.
    10. Krishnamoorthi, M. & Malayalamurthi, R. & Sakthivel, R., 2019. "Optimization of compression ignition engine fueled with diesel - chaulmoogra oil - diethyl ether blend with engine parameters and exhaust gas recirculation," Renewable Energy, Elsevier, vol. 134(C), pages 579-602.
    11. Anufriev, I.S., 2021. "Review of water/steam addition in liquid-fuel combustion systems for NOx reduction: Waste-to-energy trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    12. Khandal, S.V. & Banapurmath, N.R. & Gaitonde, V.N. & Hiremath, S.S., 2017. "Paradigm shift from mechanical direct injection diesel engines to advanced injection strategies of diesel homogeneous charge compression ignition (HCCI) engines- A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 369-384.
    13. Vu H. Nguyen & Minh Q. Duong & Kien T. Nguyen & Thin V. Pham & Phuong X. Pham, 2020. "An Extensive Analysis of Biodiesel Blend Combustion Characteristics under a Wide-Range of Thermal Conditions of a Cooperative Fuel Research Engine," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    14. Farhad M. Hossain & Jana Kosinkova & Richard J. Brown & Zoran Ristovski & Ben Hankamer & Evan Stephens & Thomas J. Rainey, 2017. "Experimental Investigations of Physical and Chemical Properties for Microalgae HTL Bio-Crude Using a Large Batch Reactor," Energies, MDPI, vol. 10(4), pages 1-16, April.
    15. Yunus khan, T.M. & Badruddin, Irfan Anjum & Badarudin, Ahmad & Banapurmath, N.R. & Salman Ahmed, N.J. & Quadir, G.A. & Al-Rashed, Abdullah A.A.A. & Khaleed, H.M.T. & Kamangar, Sarfaraz, 2015. "Effects of engine variables and heat transfer on the performance of biodiesel fueled IC engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 682-691.
    16. Theofanis D. Chountalas & Maria Founti & Dimitrios T. Hountalas, 2023. "Review of Biofuel Effect on Emissions of Various Types of Marine Propulsion and Auxiliary Engines," Energies, MDPI, vol. 16(12), pages 1-19, June.
    17. Shahabuddin, M. & Liaquat, A.M. & Masjuki, H.H. & Kalam, M.A. & Mofijur, M., 2013. "Ignition delay, combustion and emission characteristics of diesel engine fueled with biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 623-632.
    18. Hüseyin Çamur & Ebaa Alassi, 2021. "Physicochemical Properties Enhancement of Biodiesel Synthesis from Various Feedstocks of Waste/Residential Vegetable Oils and Palm Oil," Energies, MDPI, vol. 14(16), pages 1-29, August.
    19. Prasad, Salvin S. & Singh, Anirudh & Prasad, Surendra, 2020. "Degummed Pongamia oil – Ethanol microemulsions as novel alternative CI engine fuels for remote Small Island Developing States: Preparation, characterization, engine performance and emissions character," Renewable Energy, Elsevier, vol. 150(C), pages 401-411.
    20. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Bhuiya, M.M.K., 2016. "Recent development of biodiesel combustion strategies and modelling for compression ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1068-1086.
    21. Hongzhan Xie & Lanbo Song & Yizhi Xie & Dong Pi & Chunyu Shao & Qizhao Lin, 2015. "An Experimental Study on the Macroscopic Spray Characteristics of Biodiesel and Diesel in a Constant Volume Chamber," Energies, MDPI, vol. 8(6), pages 1-21, June.
    22. Mat Yasin, Mohd Hafizil & Mamat, Rizalman & Najafi, G. & Ali, Obed Majeed & Yusop, Ahmad Fitri & Ali, Mohd Hafiz, 2017. "Potentials of palm oil as new feedstock oil for a global alternative fuel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1034-1049.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Niraj & Varun, & Chauhan, Sant Ram, 2013. "Performance and emission characteristics of biodiesel from different origins: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 633-658.
    2. Capuano, D. & Costa, M. & Di Fraia, S. & Massarotti, N. & Vanoli, L., 2017. "Direct use of waste vegetable oil in internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 759-770.
    3. Russo, D. & Dassisti, M. & Lawlor, V. & Olabi, A.G., 2012. "State of the art of biofuels from pure plant oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4056-4070.
    4. Senthil Kumar, M. & Kerihuel, A. & Bellettre, J. & Tazerout, M., 2005. "Experimental investigations on the use of preheated animal fat as fuel in a compression ignition engine," Renewable Energy, Elsevier, vol. 30(9), pages 1443-1456.
    5. Subramaniam, D. & Murugesan, A. & Avinash, A. & Kumaravel, A., 2013. "Bio-diesel production and its engine characteristics—An expatiate view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 361-370.
    6. Altarazi, Yazan S.M. & Abu Talib, Abd Rahim & Yu, Jianglong & Gires, Ezanee & Abdul Ghafir, Mohd Fahmi & Lucas, John & Yusaf, Talal, 2022. "Effects of biofuel on engines performance and emission characteristics: A review," Energy, Elsevier, vol. 238(PC).
    7. Hasan, M.M. & Rahman, M.M., 2017. "Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 938-948.
    8. Narayana Reddy, J. & Ramesh, A., 2006. "Parametric studies for improving the performance of a Jatropha oil-fuelled compression ignition engine," Renewable Energy, Elsevier, vol. 31(12), pages 1994-2016.
    9. Arbab, M.I. & Masjuki, H.H. & Varman, M. & Kalam, M.A. & Imtenan, S. & Sajjad, H., 2013. "Fuel properties, engine performance and emission characteristic of common biodiesels as a renewable and sustainable source of fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 133-147.
    10. Basha, Syed Ameer & Gopal, K. Raja & Jebaraj, S., 2009. "A review on biodiesel production, combustion, emissions and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1628-1634, August.
    11. Blin, J. & Brunschwig, C. & Chapuis, A. & Changotade, O. & Sidibe, S.S. & Noumi, E.S. & Girard, P., 2013. "Characteristics of vegetable oils for use as fuel in stationary diesel engines—Towards specifications for a standard in West Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 580-597.
    12. Agarwal, Avinash Kumar & Dhar, Atul, 2013. "Experimental investigations of performance, emission and combustion characteristics of Karanja oil blends fuelled DICI engine," Renewable Energy, Elsevier, vol. 52(C), pages 283-291.
    13. Kim, Hwanam & Choi, Byungchul, 2010. "The effect of biodiesel and bioethanol blended diesel fuel on nanoparticles and exhaust emissions from CRDI diesel engine," Renewable Energy, Elsevier, vol. 35(1), pages 157-163.
    14. Sidibé, S.S. & Blin, J. & Vaitilingom, G. & Azoumah, Y., 2010. "Use of crude filtered vegetable oil as a fuel in diesel engines state of the art: Literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2748-2759, December.
    15. Shah, Pinkesh R. & Gaitonde, U.N. & Ganesh, Anuradda, 2018. "Influence of soy-lecithin as bio-additive with straight vegetable oil on CI engine characteristics," Renewable Energy, Elsevier, vol. 115(C), pages 685-696.
    16. Ranjit, P.S. & Chintala, Venkateswarlu, 2022. "Direct utilization of preheated deep fried oil in an indirect injection compression ignition engine with waste heat recovery framework," Energy, Elsevier, vol. 242(C).
    17. Bari, S. & Saad, Idris, 2015. "Optimization of vane numbers through simulation and experiment, and investigation of the effect on the performance and emissions of a CI (compression ignition) engine run with biodiesel," Energy, Elsevier, vol. 79(C), pages 248-263.
    18. Hossain, A.K. & Davies, P.A., 2010. "Plant oils as fuels for compression ignition engines: A technical review and life-cycle analysis," Renewable Energy, Elsevier, vol. 35(1), pages 1-13.
    19. Hazar, Hanbey & Aydin, Hüseyin, 2010. "Performance and emission evaluation of a CI engine fueled with preheated raw rapeseed oil (RRO)-diesel blends," Applied Energy, Elsevier, vol. 87(3), pages 786-790, March.
    20. Kodate, Shankar Vitthal & Satyanarayana Raju, Pragada & Yadav, Ajay Kumar & Kumar, G.N., 2021. "Investigation of preheated Dhupa seed oil biodiesel as an alternative fuel on the performance, emission and combustion in a CI engine," Energy, Elsevier, vol. 231(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:16:y:2012:i:3:p:1762-1778. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.