IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4647-d1168621.html
   My bibliography  Save this article

Review of Biofuel Effect on Emissions of Various Types of Marine Propulsion and Auxiliary Engines

Author

Listed:
  • Theofanis D. Chountalas

    (Laboratory of Heterogeneous Mixtures, National Technical University of Athens, 15772 Athens, Greece)

  • Maria Founti

    (Laboratory of Heterogeneous Mixtures, National Technical University of Athens, 15772 Athens, Greece)

  • Dimitrios T. Hountalas

    (Internal Combustion Engines Laboratory, National Technical University of Athens, 15772 Athens, Greece)

Abstract

The International Maritime Organization aims to reduce the maritime industry’s carbon emissions by 40% in the next two decades and has introduced measures to control CO 2 emissions. These have significantly increased interest regarding biofuels, which can be used immediately on existing vessels, reducing their carbon footprint. The most common variant is B30, a blend of 70% crude oil and 30% biodiesel. Concerns exist for the potential effect on engine performance and NO x emissions. Scientific works on the subject are limited for two-stroke marine engines, while some studies are available for four-stroke ones, usually auxiliaries. To increase information availability on the subject, in this work, we review the results of testing on multiple marine engine types, two-stroke propulsion and four-stroke auxiliary units using B30 and conventional fuels. The effect on emissions and fuel efficiency is examined and cross-referenced with the available literature. A small increase in specific fuel consumption was observed for B30 use that varied with engine type. The increase was on average 1% for two-stroke and 2.5% for four-stroke engines. The effect of B30 on NO x emissions was low but varied between engines. For low-speed two-stroke engines, NO x increase was on average 4% compared to crude oil, and 2.4% for four-stroke auxiliary units, albeit with higher variance. For some four-stroke units, a decrease in emissions was found. All previous results were in line with other published studies. Overall, it was found that while biofuel effect can vary considerably between applications, 30% biodiesel blends can be used with no concerns regarding emissions and fuel efficiency.

Suggested Citation

  • Theofanis D. Chountalas & Maria Founti & Dimitrios T. Hountalas, 2023. "Review of Biofuel Effect on Emissions of Various Types of Marine Propulsion and Auxiliary Engines," Energies, MDPI, vol. 16(12), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4647-:d:1168621
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4647/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4647/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pandey, Rajesh Kumar & Rehman, A. & Sarviya, R.M., 2012. "Impact of alternative fuel properties on fuel spray behavior and atomization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1762-1778.
    2. Cherng-Yuan Lin, 2013. "Effects of Biodiesel Blend on Marine Fuel Characteristics for Marine Vessels," Energies, MDPI, vol. 6(9), pages 1-11, September.
    3. Aydin, Hüseyin & Bayindir, Hasan, 2010. "Performance and emission analysis of cottonseed oil methyl ester in a diesel engine," Renewable Energy, Elsevier, vol. 35(3), pages 588-592.
    4. Agarwal, Deepak & Sinha, Shailendra & Agarwal, Avinash Kumar, 2006. "Experimental investigation of control of NOx emissions in biodiesel-fueled compression ignition engine," Renewable Energy, Elsevier, vol. 31(14), pages 2356-2369.
    5. Chountalas, Theofanis D. & Founti, Maria & Tsalavoutas, Ioannis, 2023. "Evaluation of biofuel effect on performance & emissions of a 2-stroke marine diesel engine using on-board measurements," Energy, Elsevier, vol. 278(C).
    6. Wei, Lijiang & Cheng, Rupeng & Mao, Hongjun & Geng, Peng & Zhang, Yanjie & You, Kun, 2018. "Combustion process and NOx emissions of a marine auxiliary diesel engine fuelled with waste cooking oil biodiesel blends," Energy, Elsevier, vol. 144(C), pages 73-80.
    7. Mohd Noor, C.W. & Noor, M.M. & Mamat, R., 2018. "Biodiesel as alternative fuel for marine diesel engine applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 127-142.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teoh, Y.H. & How, H.G. & Masjuki, H.H. & Nguyen, H.-T. & Kalam, M.A. & Alabdulkarem, A., 2019. "Investigation on particulate emissions and combustion characteristics of a common-rail diesel engine fueled with Moringa oleifera biodiesel-diesel blends," Renewable Energy, Elsevier, vol. 136(C), pages 521-534.
    2. Chiong, Meng-Choung & Kang, Hooi-Siang & Shaharuddin, Nik Mohd Ridzuan & Mat, Shabudin & Quen, Lee Kee & Ten, Ki-Hong & Ong, Muk Chen, 2021. "Challenges and opportunities of marine propulsion with alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.
    4. Chountalas, Theofanis D. & Founti, Maria & Tsalavoutas, Ioannis, 2023. "Evaluation of biofuel effect on performance & emissions of a 2-stroke marine diesel engine using on-board measurements," Energy, Elsevier, vol. 278(C).
    5. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    6. Xue, Jinlin & Grift, Tony E. & Hansen, Alan C., 2011. "Effect of biodiesel on engine performances and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1098-1116, February.
    7. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2023. "Advanced strategies to reduce harmful nitrogen-oxide emissions from biodiesel fueled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    8. Costa, E. & Almeida, M.F. & Alvim-Ferraz, C. & Dias, J.M., 2021. "Otimization of Crambe abyssinica enzymatic transesterification using response surface methodology," Renewable Energy, Elsevier, vol. 174(C), pages 444-452.
    9. Subramaniam, D. & Murugesan, A. & Avinash, A. & Kumaravel, A., 2013. "Bio-diesel production and its engine characteristics—An expatiate view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 361-370.
    10. Altarazi, Yazan S.M. & Abu Talib, Abd Rahim & Yu, Jianglong & Gires, Ezanee & Abdul Ghafir, Mohd Fahmi & Lucas, John & Yusaf, Talal, 2022. "Effects of biofuel on engines performance and emission characteristics: A review," Energy, Elsevier, vol. 238(PC).
    11. Rahman, S.M. Ashrafur & Masjuki, H.H. & Kalam, M.A. & Sanjid, A. & Abedin, M.J., 2014. "Assessment of emission and performance of compression ignition engine with varying injection timing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 221-230.
    12. Kumar, Niraj & Varun, & Chauhan, Sant Ram, 2013. "Performance and emission characteristics of biodiesel from different origins: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 633-658.
    13. Amin Nedayali & Alireza Shirneshan, 2016. "Experimental Study of the Effects of Biodiesel on the Performance of a Diesel Power Generator," Energy & Environment, , vol. 27(5), pages 553-565, August.
    14. Sadeghinezhad, E. & Kazi, S.N. & Sadeghinejad, Foad & Badarudin, A. & Mehrali, Mohammad & Sadri, Rad & Reza Safaei, Mohammad, 2014. "A comprehensive literature review of bio-fuel performance in internal combustion engine and relevant costs involvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 29-44.
    15. Bilgili, Levent, 2023. "A systematic review on the acceptance of alternative marine fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    16. Shahabuddin, M. & Liaquat, A.M. & Masjuki, H.H. & Kalam, M.A. & Mofijur, M., 2013. "Ignition delay, combustion and emission characteristics of diesel engine fueled with biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 623-632.
    17. Subramani, Lingesan & Parthasarathy, M. & Balasubramanian, Dhinesh & Ramalingam, KrishnaMoorthy, 2018. "Novel Garcinia gummi-gutta methyl ester (GGME) as a potential alternative feedstock for existing unmodified DI diesel engine," Renewable Energy, Elsevier, vol. 125(C), pages 568-577.
    18. Sadeghinezhad, E. & Kazi, S.N. & Badarudin, A. & Oon, C.S. & Zubir, M.N.M. & Mehrali, Mohammad, 2013. "A comprehensive review of bio-diesel as alternative fuel for compression ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 410-424.
    19. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Atabani, A.E. & Shahabuddin, M. & Palash, S.M. & Hazrat, M.A., 2013. "Effect of biodiesel from various feedstocks on combustion characteristics, engine durability and materials compatibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 441-455.
    20. repec:zib:zjmerd:4jmerd2018-22-32 is not listed on IDEAS
    21. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2013. "Combustion performance and emission characteristics study of pine oil in a diesel engine," Energy, Elsevier, vol. 57(C), pages 344-351.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4647-:d:1168621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.