IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v167y2022ics1364032122006797.html
   My bibliography  Save this article

A performance-based method to detect and characterize heatwaves for building resilience analysis

Author

Listed:
  • Flores-Larsen, S.
  • Bre, F.
  • Hongn, M.

Abstract

Buildings for the coming years need to achieve resilient designs for extreme climate events such as heatwaves. Building resilience analysis requires a method to detect and characterize the heatwave events that can affect the indoor environment or energy consumption. While there are several methods to detect heatwaves, their ability to predict the impact on the indoor environment was not studied yet. This work aims to compare three existing and popular models for detecting heatwaves, as well as to propose a novel method to detect those heatwaves that can have an important impact on the indoor environment. The selected models are those used in France, Australia, and Argentina. Heatwaves that occurred over a 15-year period (2006–2020) in Buenos Aires city were detected and analyzed. The impact of the detected heatwaves on the indoor overheating was quantified through the Indoor Overheating Degree (IOD) and related to the main heatwave characteristics through statistical analysis. A social single-family house was employed as the case-study and multi-year building simulations using EnergyPlus were carried out to calculate the IOD during each heatwave analyzed. The results showed that Ouzeau's method was the most suitable to detect heatwaves for building applications Furthermore, suitable thresholds for grouping the heatwaves having moderate (IOD ≤0.5 °C), strong (0.5 °C < IOD <2.0 °C), and extreme impact (IOD ≥2.0 °C) on the indoor environment were attained. The proposed method showed to be useful for classifying heatwaves according to their impact on the indoor environment, which is of high interest for building resilience analysis.

Suggested Citation

  • Flores-Larsen, S. & Bre, F. & Hongn, M., 2022. "A performance-based method to detect and characterize heatwaves for building resilience analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
  • Handle: RePEc:eee:rensus:v:167:y:2022:i:c:s1364032122006797
    DOI: 10.1016/j.rser.2022.112795
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122006797
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112795?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John R. Nairn & Robert J. B. Fawcett, 2014. "The Excess Heat Factor: A Metric for Heatwave Intensity and Its Use in Classifying Heatwave Severity," IJERPH, MDPI, vol. 12(1), pages 1-27, December.
    2. Anaïs Machard & Christian Inard & Jean-Marie Alessandrini & Charles Pelé & Jacques Ribéron, 2020. "A Methodology for Assembling Future Weather Files Including Heatwaves for Building Thermal Simulations from the European Coordinated Regional Downscaling Experiment (EURO-CORDEX) Climate Data," Energies, MDPI, vol. 13(13), pages 1-36, July.
    3. A. Lemonsu & Vincent Viguie & M. Daniel & V. Masson, 2015. "Vulnerability to heat waves: Impact of urban expansion scenarios on urban heat island and heat stress in Paris (France)," Post-Print hal-01695088, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan Yan & Hui Liu & Ningcheng Wang & Shenjun Yao, 2021. "How Does Low-Density Urbanization Reduce the Financial Sustainability of Chinese Cities? A Debt Perspective," Land, MDPI, vol. 10(9), pages 1-18, September.
    2. John Nairn & Bertram Ostendorf & Peng Bi, 2018. "Performance of Excess Heat Factor Severity as a Global Heatwave Health Impact Index," IJERPH, MDPI, vol. 15(11), pages 1-26, November.
    3. Alessio Mastrucci & Edward Byers & Shonali Pachauri & Narasimha Rao & Bas Ruijven, 2022. "Cooling access and energy requirements for adaptation to heat stress in megacities," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(8), pages 1-16, December.
    4. Ali S. Alghamdi, 2022. "Recent Climatology (1991–2020) and Trends in Local Warm and Cold Season Extreme Temperature Days and Nights in Arabia," IJERPH, MDPI, vol. 19(5), pages 1-18, February.
    5. Rakin Abrar & Showmitra Kumar Sarkar & Kashfia Tasnim Nishtha & Swapan Talukdar & Shahfahad & Atiqur Rahman & Abu Reza Md Towfiqul Islam & Amir Mosavi, 2022. "Assessing the Spatial Mapping of Heat Vulnerability under Urban Heat Island (UHI) Effect in the Dhaka Metropolitan Area," Sustainability, MDPI, vol. 14(9), pages 1-24, April.
    6. Leibin Wang & Robert V. Rohli & Qigen Lin & Shaofei Jin & Xiaodong Yan, 2022. "Impact of Extreme Heatwaves on Population Exposure in China Due to Additional Warming," Sustainability, MDPI, vol. 14(18), pages 1-13, September.
    7. Julia Kurek & Justyna Martyniuk-Pęczek, 2021. "Exploring DAD and ADD Methods for Dealing with Urban Heat Island Effect," Sustainability, MDPI, vol. 13(17), pages 1-14, August.
    8. Stevan Savić & Vladimir Marković & Ivan Šećerov & Dragoslav Pavić & Daniela Arsenović & Dragan Milošević & Dragan Dolinaj & Imre Nagy & Milana Pantelić, 2018. "Heat wave risk assessment and mapping in urban areas: case study for a midsized Central European city, Novi Sad (Serbia)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 891-911, April.
    9. Kamruzzaman, Md. & Deilami, Kaveh & Yigitcanlar, Tan, 2018. "Investigating the urban heat island effect of transit oriented development in Brisbane," Journal of Transport Geography, Elsevier, vol. 66(C), pages 116-124.
    10. Celemin Juan Pablo & Arias Maria Eugenia, 2022. "Relationship between densification and NDVI loss. A study using the Google Earth Engine at local scale," Environmental & Socio-economic Studies, Sciendo, vol. 10(3), pages 33-42, September.
    11. Kuczyński, Tadeusz & Staszczuk, Anna, 2023. "Experimental study of the thermal behavior of PCM and heavy building envelope structures during summer in a temperate climate," Energy, Elsevier, vol. 279(C).
    12. Karol Przeździecki & Jarosław Zawadzki, 2023. "Impact of the Variability of Vegetation, Soil Moisture, and Building Density between City Districts on Land Surface Temperature, Warsaw, Poland," Sustainability, MDPI, vol. 15(2), pages 1-14, January.
    13. Jeffrey C. Standen & Jessica Spencer & Grace W. Lee & Joe Van Buskirk & Veronica Matthews & Ivan Hanigan & Sinead Boylan & Edward Jegasothy & Matilde Breth-Petersen & Geoffrey G. Morgan, 2022. "Aboriginal Population and Climate Change in Australia: Implications for Health and Adaptation Planning," IJERPH, MDPI, vol. 19(12), pages 1-30, June.
    14. Chiatti, Chiara & Kousis, Ioannis & Fabiani, Claudia & Pisello, Anna Laura, 2022. "Effect of optimized photoluminescence on luminous and passive cooling potential: A new combined experimental and numerical approach applied to yellow-emitting glass tiles," Renewable Energy, Elsevier, vol. 196(C), pages 28-39.
    15. Kim, Hyungkyoo & Jung, Yoonhee & Oh, Jae In, 2019. "Transformation of urban heat island in the three-center city of Seoul, South Korea: The role of master plans," Land Use Policy, Elsevier, vol. 86(C), pages 328-338.
    16. Kohler, M. & Blond, N. & Clappier, A., 2016. "A city scale degree-day method to assess building space heating energy demands in Strasbourg Eurometropolis (France)," Applied Energy, Elsevier, vol. 184(C), pages 40-54.
    17. Yang, Yuchen & Javanroodi, Kavan & Nik, Vahid M., 2021. "Climate change and energy performance of European residential building stocks – A comprehensive impact assessment using climate big data from the coordinated regional climate downscaling experiment," Applied Energy, Elsevier, vol. 298(C).
    18. Alireza Dehghani & Mehdi Alidadi & Ayyoob Sharifi, 2022. "Compact Development Policy and Urban Resilience: A Critical Review," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    19. Sana Sayadi & Jan Akander & Abolfazl Hayati & Mattias Gustafsson & Mathias Cehlin, 2023. "Comparison of Space Cooling Systems from Energy and Economic Perspectives for a Future City District in Sweden," Energies, MDPI, vol. 16(9), pages 1-22, April.
    20. Dan Wanyama & Erin L. Bunting & Nicholas Weil & David Keellings, 2023. "Delineating and characterizing changes in heat wave events across the United States climate regions," Climatic Change, Springer, vol. 176(2), pages 1-23, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:167:y:2022:i:c:s1364032122006797. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.