IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v157y2022ics1364032121012934.html
   My bibliography  Save this article

Designing an effective two-stage, sustainable, and IoT based waste management system

Author

Listed:
  • Salehi-Amiri, Amirhossein
  • Akbapour, Navid
  • Hajiaghaei-Keshteli, Mostafa
  • Gajpal, Yuvraj
  • Jabbarzadeh, Armin

Abstract

In the history of sustainable development, particular attention has been paid to waste management systems (WMS), especially in smart cities. Putting real-world assumptions into practice with real-time waste bins' fill levels has not been considered in previous literature and can be investigated by utilizing the Internet of Things (IoT) concept. In this paper, two sub-models are developed using the vehicle routing problem concept. The first sub-model uses modern traceability IoT-based devices to obtain data in real-time, making it possible to identify the threshold waste level (TWL) parameter. The importance of the first sub-model is not only to determine an effective and innovative collection route for achieving sustainable being social and environmental impacts on WMS, but also to consider the priority of visiting bins based on their significance. Both waste separation and transferring them into the recovery value center are considered in the second model, both to maximize the recovery value and minimize visual pollution. The recent and capable meta-heuristic algorithms are utilized and probed to test the proposed problem's accuracy and find the best algorithm for this problem. Finally, in the sensitivity analysis section, different parameters of the problem were investigated. Besides, by defining and analyzing two indices, the best efficiency in using the transport fleet, the optimal amount of traveled distance, and the amount of collected waste can be achieved by setting the TWL between 70 and 75%.

Suggested Citation

  • Salehi-Amiri, Amirhossein & Akbapour, Navid & Hajiaghaei-Keshteli, Mostafa & Gajpal, Yuvraj & Jabbarzadeh, Armin, 2022. "Designing an effective two-stage, sustainable, and IoT based waste management system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
  • Handle: RePEc:eee:rensus:v:157:y:2022:i:c:s1364032121012934
    DOI: 10.1016/j.rser.2021.112031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121012934
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.112031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Di Foggia, Giacomo & Beccarello, Massimo, 2018. "Improving efficiency in the MSW collection and disposal service combining price cap and yardstick regulation: The Italian case," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 79, pages 223-231.
    2. Hamed Farrokhi-Asl & Ahmad Makui & Armin Jabbarzadeh & Farnaz Barzinpour, 2020. "Solving a multi-objective sustainable waste collection problem considering a new collection network," Operational Research, Springer, vol. 20(4), pages 1977-2015, December.
    3. Tomić, Tihomir & Schneider, Daniel Rolph, 2018. "The role of energy from waste in circular economy and closing the loop concept – Energy analysis approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 268-287.
    4. R. Schultz & L. Stougie & M. H. van der Vlerk, 1996. "Two‐stage stochastic integer programming: a survey," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 50(3), pages 404-416, November.
    5. Asadi, Ehsan & Habibi, Farhad & Nickel, Stefan & Sahebi, Hadi, 2018. "A bi-objective stochastic location-inventory-routing model for microalgae-based biofuel supply chain," Applied Energy, Elsevier, vol. 228(C), pages 2235-2261.
    6. Jose Carlos Molina & Ignacio Eguia & Jesus Racero, 2019. "Reducing pollutant emissions in a waste collection vehicle routing problem using a variable neighborhood tabu search algorithm: a case study," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 253-287, July.
    7. Salehi-Amiri, Amirhossein & Zahedi, Ali & Akbapour, Navid & Hajiaghaei-Keshteli, Mostafa, 2021. "Designing a sustainable closed-loop supply chain network for walnut industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    8. Ali Ebadi Torkayesh & Hadi Rezaei Vandchali & Erfan Babaee Tirkolaee, 2021. "Multi-Objective Optimization for Healthcare Waste Management Network Design with Sustainability Perspective," Sustainability, MDPI, vol. 13(15), pages 1-17, July.
    9. Vanessa Zeller & Edgar Battand Towa Kouokam & Marc Degrez & Wouter Achten, 2019. "Urban waste flows and their potential for a circular economy model at city-region level," ULB Institutional Repository 2013/278528, ULB -- Universite Libre de Bruxelles.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muneeb, Syed Mohd & Asim, Zainab & Hajiaghaei-Keshteli, Mostafa & Abbas, Haidar, 2023. "A multi-objective integrated supplier selection-production-distribution model for re-furbished products: Towards a circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    2. Jonathan Asher Morashti & Youra An & Hyunmi Jang, 2022. "A Systematic Literature Review of Sustainable Packaging in Supply Chain Management," Sustainability, MDPI, vol. 14(9), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Di Foggia, Giacomo & Beccarello, Massimo, 2021. "Drivers of municipal solid waste management cost based on cost models inherent to sorted and unsorted waste," SocArXiv s6q3m, Center for Open Science.
    2. Awasthi, Mukesh Kumar & Sarsaiya, Surendra & Wainaina, Steven & Rajendran, Karthik & Awasthi, Sanjeev Kumar & Liu, Tao & Duan, Yumin & Jain, Archana & Sindhu, Raveendran & Binod, Parameswaran & Pandey, 2021. "Techno-economics and life-cycle assessment of biological and thermochemical treatment of bio-waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Di Foggia, Giacomo & Beccarello, Massimo, 2021. "Designing waste management systems to meet circular economy goals: The Italian case," MPRA Paper 105959, University Library of Munich, Germany.
    4. Govindan, Kannan & Salehian, Farhad & Kian, Hadi & Hosseini, Seyed Teimoor & Mina, Hassan, 2023. "A location-inventory-routing problem to design a circular closed-loop supply chain network with carbon tax policy for achieving circular economy: An augmented epsilon-constraint approach," International Journal of Production Economics, Elsevier, vol. 257(C).
    5. Daniel Ddiba & Kim Andersson & Arno Rosemarin & Helfrid Schulte-Herbrüggen & Sarah Dickin, 2022. "The circular economy potential of urban organic waste streams in low- and middle-income countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 1116-1144, January.
    6. Maria Assunta Barchiesi & Roberta Costa & Francesca Di Pillo, 2022. "The Link between the Compliance with Environmental Legislation on Separate Collection and the Municipal Solid Waste Costs," Sustainability, MDPI, vol. 14(9), pages 1-13, May.
    7. Di Foggia, Giacomo & Beccarello, Massimo, 2020. "The impact of a gain-sharing cost-reflective tariff on waste management cost under incentive regulation: The Italian case," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 265.
    8. Edgar Battand Towa Kouokam & Vanessa Zeller & Wouter Achten, 2019. "Input-output models and waste management analysis: A critical review," ULB Institutional Repository 2013/359535, ULB -- Universite Libre de Bruxelles.
    9. Georgios Giakoumakis & Dorothea Politi & Dimitrios Sidiras, 2021. "Medical Waste Treatment Technologies for Energy, Fuels, and Materials Production: A Review," Energies, MDPI, vol. 14(23), pages 1-30, December.
    10. Feng, Jianghong & Xu, Su Xiu & Xu, Gangyan & Cheng, Huibing, 2022. "An integrated decision-making method for locating parking centers of recyclable waste transportation vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    11. Di Foggia, Giacomo & Beccarello, Massimo, 2023. "Designing circular economy-compliant municipal solid waste management charging schemes," Utilities Policy, Elsevier, vol. 81(C).
    12. Agnieszka Jaszczak & Katarina Kristianova & Ewelina Pochodyła & Jan K. Kazak & Krzysztof Młynarczyk, 2021. "Revitalization of Public Spaces in Cittaslow Towns: Recent Urban Redevelopment in Central Europe," Sustainability, MDPI, vol. 13(5), pages 1-24, February.
    13. Sileryte, Rusne & Sabbe, Arnout & Bouzas, Vasileios & Meister, Kozmo & Wandl, Alexander & van Timmeren, Arjan, 2022. "European Waste Statistics data for a Circular Economy Monitor: opportunities and limitations from the Amsterdam Metropolitan Region," OSF Preprints da6f2, Center for Open Science.
    14. Maria Molinos-Senante & Alexandros Maziotis, 2021. "The Cost of Reducing Municipal Unsorted Solid Waste: Evidence from Municipalities in Chile," Sustainability, MDPI, vol. 13(12), pages 1-14, June.
    15. Emy Zecca & Emy Zecca & Andrea Pronti & Andrea Pronti & Elisa Chioatto & Elisa Chioatto, 2023. "Environmental policies, waste and circular convergence in the European context," Insights into Regional Development, VsI Entrepreneurship and Sustainability Center, vol. 5(3), pages 95-121, September.
    16. Gian Carlo Delgado Ramos, 2021. "Climate-Environmental Governance in the Mexico Valley Metropolitan Area: Assessing Local Institutional Capacities in the Face of Current and Future Urban Metabolic Dynamics," World, MDPI, vol. 2(1), pages 1-17, January.
    17. Li, Zhengbing & Liang, Yongtu & Ni, Weilong & Liao, Qi & Xu, Ning & Li, Lichao & Zheng, Jianqin & Zhang, Haoran, 2022. "Pipesharing: economic-environmental benefits from transporting biofuels through multiproduct pipelines," Applied Energy, Elsevier, vol. 311(C).
    18. Massimo Beccarello & Giacomo Di Foggia, 2023. "Efficient scale and scope of business models used in municipal solid waste management," European Journal of Management and Business Economics, Emerald Group Publishing Limited, vol. 32(4), pages 492-508, April.
    19. Yoon, Ha-Jun & Seo, Seung-Kwon & Lee, Chul-Jin, 2022. "Multi-period optimization of hydrogen supply chain utilizing natural gas pipelines and byproduct hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    20. Carlos A. Moreno-Camacho & Jairo R. Montoya-Torres & Anicia Jaegler, 2023. "Sustainable supply chain network design: a study of the Colombian dairy sector," Annals of Operations Research, Springer, vol. 324(1), pages 573-599, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:157:y:2022:i:c:s1364032121012934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.