IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v152y2021ics1364032121009680.html
   My bibliography  Save this article

A review on particulate photocatalytic hydrogen production system: Progress made in achieving high energy conversion efficiency and key challenges ahead

Author

Listed:
  • Lakhera, Sandeep Kumar
  • Rajan, Aswathy
  • T.P., Rugma
  • Bernaurdshaw, Neppolian

Abstract

Photocatalytic water splitting is a sustainable and clean method to produce renewable hydrogen. The particulate photocatalytic water splitting system has been envisioned as an efficient and cost-effective solution for large-scale hydrogen production. Herein, we have reviewed the various existing particulate photocatalytic systems for hydrogen production via overall water splitting, as well as via photo-reforming of biomass-derived organic substances. The progress made in improving the apparent quantum efficiency and solar to the hydrogen conversion efficiency of existing photocatalysts is highlighted. The factors affecting the particulate photocatalytic water splitting system are summarized. Finally, some of the key limitations and future perspectives on large-scale hydrogen production are discussed.

Suggested Citation

  • Lakhera, Sandeep Kumar & Rajan, Aswathy & T.P., Rugma & Bernaurdshaw, Neppolian, 2021. "A review on particulate photocatalytic hydrogen production system: Progress made in achieving high energy conversion efficiency and key challenges ahead," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
  • Handle: RePEc:eee:rensus:v:152:y:2021:i:c:s1364032121009680
    DOI: 10.1016/j.rser.2021.111694
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121009680
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111694?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bin Tian & Bining Tian & Bethany Smith & M. C. Scott & Ruinian Hua & Qin Lei & Yue Tian, 2018. "RETRACTED ARTICLE: Supported black phosphorus nanosheets as hydrogen-evolving photocatalyst achieving 5.4% energy conversion efficiency at 353 K," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    2. Tsuyoshi Takata & Junzhe Jiang & Yoshihisa Sakata & Mamiko Nakabayashi & Naoya Shibata & Vikas Nandal & Kazuhiko Seki & Takashi Hisatomi & Kazunari Domen, 2020. "Photocatalytic water splitting with a quantum efficiency of almost unity," Nature, Nature, vol. 581(7809), pages 411-414, May.
    3. Yasuda, Masahide & Matsumoto, Tomoko & Yamashita, Toshiaki, 2018. "Sacrificial hydrogen production over TiO2-based photocatalysts: Polyols, carboxylic acids, and saccharides," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1627-1635.
    4. Xuehua Wang & Xianghu Wang & Jianfeng Huang & Shaoxiang Li & Alan Meng & Zhenjiang Li, 2021. "Interfacial chemical bond and internal electric field modulated Z-scheme Sv-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    5. Ahmad, H. & Kamarudin, S.K. & Minggu, L.J. & Kassim, M., 2015. "Hydrogen from photo-catalytic water splitting process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 599-610.
    6. Reilly, Kevin & Wilkinson, David P. & Taghipour, Fariborz, 2018. "Photocatalytic water splitting in a fluidized bed system: Computational modeling and experimental studies," Applied Energy, Elsevier, vol. 222(C), pages 423-436.
    7. Tasleem, Sehar & Tahir, Muhammad, 2020. "Current trends in strategies to improve photocatalytic performance of perovskites materials for solar to hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    8. Maochang Liu & Yubin Chen & Jinzhan Su & Jinwen Shi & Xixi Wang & Liejin Guo, 2016. "Photocatalytic hydrogen production using twinned nanocrystals and an unanchored NiSx co-catalyst," Nature Energy, Nature, vol. 1(11), pages 1-8, November.
    9. David W. Wakerley & Moritz F. Kuehnel & Katherine L. Orchard & Khoa H. Ly & Timothy E. Rosser & Erwin Reisner, 2017. "Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst," Nature Energy, Nature, vol. 2(4), pages 1-9, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jinpeng & Chen, Xiangjie & Li, Guiqiang, 2023. "Effect of separation wavelength on a novel solar-driven hybrid hydrogen production system (SDHPS) by solar full spectrum energy," Renewable Energy, Elsevier, vol. 215(C).
    2. Mahdi Takach & Mirza Sarajlić & Dorothee Peters & Michael Kroener & Frank Schuldt & Karsten von Maydell, 2022. "Review of Hydrogen Production Techniques from Water Using Renewable Energy Sources and Its Storage in Salt Caverns," Energies, MDPI, vol. 15(4), pages 1-17, February.
    3. Li, Guiqiang & Li, Jinpeng & Yang, Ruoxi & Chen, Xiangjie, 2022. "Performance analysis of a hybrid hydrogen production system in the integrations of PV/T power generation electrolytic water and photothermal cooperative reaction," Applied Energy, Elsevier, vol. 323(C).
    4. Stefano Andrea Balsamo & Salvatore Sciré & Marcello Condorelli & Roberto Fiorenza, 2022. "Photocatalytic H 2 Production on Au/TiO 2 : Effect of Au Photodeposition on Different TiO 2 Crystalline Phases," J, MDPI, vol. 5(1), pages 1-13, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaguang Li & Xianhua Bai & Dachao Yuan & Fengyu Zhang & Bo Li & Xingyuan San & Baolai Liang & Shufang Wang & Jun Luo & Guangsheng Fu, 2022. "General heterostructure strategy of photothermal materials for scalable solar-heating hydrogen production without the consumption of artificial energy," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Srabanti Ghosh & Susmita Bera & Soumita Samajdar & Sourabh Pal, 2023. "Phosphorus based hybrid materials for green fuel generation," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(1), January.
    3. Yasuda, Masahide & Matsumoto, Tomoko & Yamashita, Toshiaki, 2018. "Sacrificial hydrogen production over TiO2-based photocatalysts: Polyols, carboxylic acids, and saccharides," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1627-1635.
    4. Yimeng Li & Li Yang & Huijie He & Lei Sun & Honglei Wang & Xu Fang & Yanliang Zhao & Daoyuan Zheng & Yu Qi & Zhen Li & Weiqiao Deng, 2022. "In situ photodeposition of platinum clusters on a covalent organic framework for photocatalytic hydrogen production," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Yong Liu & Mingjian Zhang & Zhuan Wang & Jiandong He & Jie Zhang & Sheng Ye & Xiuli Wang & Dongfeng Li & Heng Yin & Qianhong Zhu & Huanwang Jing & Yuxiang Weng & Feng Pan & Ruotian Chen & Can Li & Fen, 2022. "Bipolar charge collecting structure enables overall water splitting on ferroelectric photocatalysts," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Kierzkowska-Pawlak, Hanna & Tyczkowski, Jacek & Jarota, Arkadiusz & Abramczyk, Halina, 2019. "Hydrogen production in liquid water by femtosecond laser-induced plasma," Applied Energy, Elsevier, vol. 247(C), pages 24-31.
    7. Tasleem, Sehar & Tahir, Muhammad, 2020. "Current trends in strategies to improve photocatalytic performance of perovskites materials for solar to hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    8. Khandelwal, Akshat & Maarisetty, Dileep & Baral, Saroj Sundar, 2022. "Fundamentals and application of single-atom photocatalyst in sustainable energy and environmental applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    9. Guo, Liejin & Chen, Yubin & Su, Jinzhan & Liu, Maochang & Liu, Ya, 2019. "Obstacles of solar-powered photocatalytic water splitting for hydrogen production: A perspective from energy flow and mass flow," Energy, Elsevier, vol. 172(C), pages 1079-1086.
    10. Banerjee, Debarun & Kushwaha, Nidhi & Shetti, Nagaraj P. & Aminabhavi, Tejraj M. & Ahmad, Ejaz, 2022. "Green hydrogen production via photo-reforming of bio-renewable resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Vikas Nandal & Ryota Shoji & Hiroyuki Matsuzaki & Akihiro Furube & Lihua Lin & Takashi Hisatomi & Masanori Kaneko & Koichi Yamashita & Kazunari Domen & Kazuhiko Seki, 2021. "Unveiling charge dynamics of visible light absorbing oxysulfide for efficient overall water splitting," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    12. Chunzhi Li & Jiali Liu & He Li & Kaifeng Wu & Junhui Wang & Qihua Yang, 2022. "Covalent organic frameworks with high quantum efficiency in sacrificial photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Pan, Hong-Yu & Chen, Xue & Xia, Xin-Lin, 2022. "A review on the evolvement of optical-frequency filtering in photonic devices in 2016–2021," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    14. Gupta, Bhavana & Melvin, Ambrose A., 2017. "TiO2/RGO composites: Its achievement and factors involved in hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1384-1392.
    15. Ma, Ben-Chi & Lin, Hua & Zhu, Yizhou & Zeng, Zilong & Geng, Jiafeng & Jing, Dengwei, 2022. "A new Concentrated Photovoltaic Thermal-Hydrogen system with photocatalyst suspension as optical liquid filter," Renewable Energy, Elsevier, vol. 194(C), pages 1221-1232.
    16. Sharma, Shailja & Pai, Mrinal R. & Kaur, Gurpreet & Divya, & Satsangi, Vibha R. & Dass, Sahab & Shrivastav, Rohit, 2019. "Efficient hydrogen generation on CuO core/AgTiO2 shell nano-hetero-structures by photocatalytic splitting of water," Renewable Energy, Elsevier, vol. 136(C), pages 1202-1216.
    17. Yannan Liu & Cheng-Hao Liu & Tushar Debnath & Yong Wang & Darius Pohl & Lucas V. Besteiro & Debora Motta Meira & Shengyun Huang & Fan Yang & Bernd Rellinghaus & Mohamed Chaker & Dmytro F. Perepichka &, 2023. "Silver nanoparticle enhanced metal-organic matrix with interface-engineering for efficient photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Fabrizio Ganci & Tracy Baguet & Giuseppe Aiello & Valentino Cusumano & Philippe Mandin & Carmelo Sunseri & Rosalinda Inguanta, 2019. "Nanostructured Ni Based Anode and Cathode for Alkaline Water Electrolyzers," Energies, MDPI, vol. 12(19), pages 1-17, September.
    19. Takuya Suguro & Fuminao Kishimoto & Nobuko Kariya & Tsuyoshi Fukui & Mamiko Nakabayashi & Naoya Shibata & Tsuyoshi Takata & Kazunari Domen & Kazuhiro Takanabe, 2022. "A hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Yan Guo & Qixin Zhou & Jun Nan & Wenxin Shi & Fuyi Cui & Yongfa Zhu, 2022. "Perylenetetracarboxylic acid nanosheets with internal electric fields and anisotropic charge migration for photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:152:y:2021:i:c:s1364032121009680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.