IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v152y2021ics1364032121009023.html
   My bibliography  Save this article

Assessing users’ willingness-to-engagement towards Net Zero Energy communities in Italy

Author

Listed:
  • Piselli, Cristina
  • Salvadori, Giacomo
  • Diciotti, Lorenzo
  • Fantozzi, Fabio
  • Pisello, Anna Laura

Abstract

The human-centric energy transition is required to foster efficient buildings and communities by combining users’ engagement and technical solutions. In this view, the present study aims at evaluating for the first time the influence of users’ holistic experience on the feasibility of Net Zero Energy (NZE) communities in laggard countries for their application. The human-centric role is analyzed from a twofold perspective: the influence of user-building interaction on the expected final energy performance and the psychological factors affecting willingness towards the exploitation of NZE communities. To this aim, different scenarios for user-building interaction, obtained varying the family typology and occupants’ energy-related attitude, are assessed via validated dynamic simulation. In addition, an extended Technology Acceptance Model is examined through the submission of an extensive survey to investigate consumers’ intent to live and invest in buildings within NZE communities. Findings show the clear impact of users’ energy-awareness and knowledge of the potentialities of this solution on both buildings NZE performance achievement and consumers’ willingness towards NZE settlements implementation. Accordingly, this study brings to light how people engagement in energy communities is of fundamental relevance to reach the expected energy transition towards peer-to-peer renewable energy market, especially in laggard countries (e.g. Italy), where these concepts are currently being exploited.

Suggested Citation

  • Piselli, Cristina & Salvadori, Giacomo & Diciotti, Lorenzo & Fantozzi, Fabio & Pisello, Anna Laura, 2021. "Assessing users’ willingness-to-engagement towards Net Zero Energy communities in Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
  • Handle: RePEc:eee:rensus:v:152:y:2021:i:c:s1364032121009023
    DOI: 10.1016/j.rser.2021.111627
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121009023
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111627?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nematchoua, Modeste Kameni & Marie-Reine Nishimwe, Antoinette & Reiter, Sigrid, 2021. "Towards nearly zero-energy residential neighbourhoods in the European Union: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Tushar, Wayes & Yuen, Chau & Saha, Tapan K. & Morstyn, Thomas & Chapman, Archie C. & Alam, M. Jan E. & Hanif, Sarmad & Poor, H. Vincent, 2021. "Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges," Applied Energy, Elsevier, vol. 282(PA).
    3. Delzendeh, Elham & Wu, Song & Lee, Angela & Zhou, Ying, 2017. "The impact of occupants’ behaviours on building energy analysis: A research review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1061-1071.
    4. Fred D. Davis & Richard P. Bagozzi & Paul R. Warshaw, 1989. "User Acceptance of Computer Technology: A Comparison of Two Theoretical Models," Management Science, INFORMS, vol. 35(8), pages 982-1003, August.
    5. Cristino, T.M. & Lotufo, F.A. & Delinchant, B. & Wurtz, F. & Faria Neto, A., 2021. "A comprehensive review of obstacles and drivers to building energy-saving technologies and their association with research themes, types of buildings, and geographic regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Zhao, Dong-Xue & He, Bao-Jie & Johnson, Christine & Mou, Ben, 2015. "Social problems of green buildings: From the humanistic needs to social acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1594-1609.
    7. Shen, Meng & Lu, Yujie & Wei, Kua Harn & Cui, Qingbin, 2020. "Prediction of household electricity consumption and effectiveness of concerted intervention strategies based on occupant behaviour and personality traits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    8. Piselli, Cristina & Pisello, Anna Laura, 2019. "Occupant behavior long-term continuous monitoring integrated to prediction models: Impact on office building energy performance," Energy, Elsevier, vol. 176(C), pages 667-681.
    9. Pothitou, Mary & Hanna, Richard F. & Chalvatzis, Konstantinos J., 2016. "Environmental knowledge, pro-environmental behaviour and energy savings in households: An empirical study," Applied Energy, Elsevier, vol. 184(C), pages 1217-1229.
    10. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    11. D’Oca, Simona & Hong, Tianzhen & Langevin, Jared, 2018. "The human dimensions of energy use in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 731-742.
    12. Wu, Wenbo & Dong, Bing & Wang, Qi (Ryan) & Kong, Meng & Yan, Da & An, Jingjing & Liu, Yapan, 2020. "A novel mobility-based approach to derive urban-scale building occupant profiles and analyze impacts on building energy consumption," Applied Energy, Elsevier, vol. 278(C).
    13. Mehreen Saleem Gul & Elmira NezamiFar, 2020. "Investigating the Interrelationships among Occupant Attitude, Knowledge and Behaviour in LEED-Certified Buildings Using Structural Equation Modelling," Energies, MDPI, vol. 13(12), pages 1-26, June.
    14. Lin Zhang & Liwen Chen & Zezhou Wu & Sizhen Zhang & Huanbin Song, 2018. "Investigating Young Consumers’ Purchasing Intention of Green Housing in China," Sustainability, MDPI, vol. 10(4), pages 1-15, April.
    15. Jung, Nusrat & Moula, Munjur E. & Fang, Tingting & Hamdy, Mohamed & Lahdelma, Risto, 2016. "Social acceptance of renewable energy technologies for buildings in the Helsinki Metropolitan Area of Finland," Renewable Energy, Elsevier, vol. 99(C), pages 813-824.
    16. Castaldo, Veronica Lucia & Pisello, Anna Laura & Piselli, Cristina & Fabiani, Claudia & Cotana, Franco & Santamouris, Mattheos, 2018. "How outdoor microclimate mitigation affects building thermal-energy performance: A new design-stage method for energy saving in residential near-zero energy settlements in Italy," Renewable Energy, Elsevier, vol. 127(C), pages 920-935.
    17. Sovacool, Benjamin K. & Furszyfer Del Rio, Dylan D., 2020. "Smart home technologies in Europe: A critical review of concepts, benefits, risks and policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    18. Wynne W. Chin & Abhijit Gopal & W. David Salisbury, 1997. "Advancing the Theory of Adaptive Structuration: The Development of a Scale to Measure Faithfulness of Appropriation," Information Systems Research, INFORMS, vol. 8(4), pages 342-367, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bernadette Fina & Miriam Schwebler & Carolin Monsberger, 2022. "Different Technologies’ Impacts on the Economic Viability, Energy Flows and Emissions of Energy Communities," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
    2. Piselli, C. & Fronzetti Colladon, A. & Segneri, L. & Pisello, A.L., 2022. "Evaluating and improving social awareness of energy communities through semantic network analysis of online news," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Musolino, Monica & Maggio, Gaetano & D'Aleo, Erika & Nicita, Agatino, 2023. "Three case studies to explore relevant features of emerging renewable energy communities in Italy," Renewable Energy, Elsevier, vol. 210(C), pages 540-555.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Xiaoxiao & Yu, Hao & Sun, Qiuwen & Tam, Vivian W.Y., 2023. "A critical review of occupant energy consumption behavior in buildings: How we got here, where we are, and where we are headed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    2. Khanam, Tahamina & Reiner, David M, 2022. "Evaluating gaps in knowledge, willingness and heating performance in individual preferences on household energy and climate policy: Evidence from the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    3. Besagni, Giorgio & Premoli Vilà, Lidia & Borgarello, Marco & Trabucchi, Andrea & Merlo, Marco & Rodeschini, Jacopo & Finazzi, Francesco, 2021. "Electrification pathways of the Italian residential sector under socio-demographic constrains: Looking towards 2040," Energy, Elsevier, vol. 217(C).
    4. Hsiao-Ping Chang & Chun-Chieh Ma & Han-Shen Chen, 2019. "Climate Change and Consumer’s Attitude toward Insect Food," IJERPH, MDPI, vol. 16(9), pages 1-17, May.
    5. Chung-Te Ting & Chi-Ming Hsieh & Hsiao-Ping Chang & Han-Shen Chen, 2019. "Environmental Consciousness and Green Customer Behavior: The Moderating Roles of Incentive Mechanisms," Sustainability, MDPI, vol. 11(3), pages 1-16, February.
    6. Yamaguchi, Yohei & Shoda, Yuto & Yoshizawa, Shinya & Imai, Tatsuya & Perwez, Usama & Shimoda, Yoshiyuki & Hayashi, Yasuhiro, 2023. "Feasibility assessment of net zero-energy transformation of building stock using integrated synthetic population, building stock, and power distribution network framework," Applied Energy, Elsevier, vol. 333(C).
    7. Sora Kang & Kai H. Lim & Min Soo Kim & Hee-Dong Yang, 2012. "Research Note ---A Multilevel Analysis of the Effect of Group Appropriation on Collaborative Technologies Use and Performance," Information Systems Research, INFORMS, vol. 23(1), pages 214-230, March.
    8. Wang, Jun & Qin, Yanjun & Zhou, Jingyang, 2021. "Incentive policies for prefabrication implementation of real estate enterprises: An evolutionary game theory-based analysis," Energy Policy, Elsevier, vol. 156(C).
    9. Zhou, Yuekuan, 2022. "Energy sharing and trading on a novel spatiotemporal energy network in Guangdong-Hong Kong-Macao Greater Bay Area," Applied Energy, Elsevier, vol. 318(C).
    10. Jacqueline Nicole Adams & Zsófia Deme Bélafi & Miklós Horváth & János Balázs Kocsis & Tamás Csoknyai, 2021. "How Smart Meter Data Analysis Can Support Understanding the Impact of Occupant Behavior on Building Energy Performance: A Comprehensive Review," Energies, MDPI, vol. 14(9), pages 1-23, April.
    11. Jack, M.W. & Mirfin, A. & Anderson, B., 2021. "The role of highly energy-efficient dwellings in enabling 100% renewable electricity," Energy Policy, Elsevier, vol. 158(C).
    12. Pisello, A.L. & Pigliautile, I. & Andargie, M. & Berger, C. & Bluyssen, P.M. & Carlucci, S. & Chinazzo, G. & Deme Belafi, Z. & Dong, B. & Favero, M. & Ghahramani, A. & Havenith, G. & Heydarian, A. & K, 2021. "Test rooms to study human comfort in buildings: A review of controlled experiments and facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    13. Yunxia Liu & Xunpeng Shi & Ya Ping Wang & Tao Sun, 2019. "Promoting Green Residential Buildings in China: Bridging the Gap between Design and Operation to Improve Occupants’ Residential Satisfaction," Sustainability, MDPI, vol. 11(13), pages 1-18, June.
    14. Piselli, Cristina & Pisello, Anna Laura, 2019. "Occupant behavior long-term continuous monitoring integrated to prediction models: Impact on office building energy performance," Energy, Elsevier, vol. 176(C), pages 667-681.
    15. Mata, Érika & Wanemark, Joel & Nik, Vahid M. & Sasic Kalagasidis, Angela, 2019. "Economic feasibility of building retrofitting mitigation potentials: Climate change uncertainties for Swedish cities," Applied Energy, Elsevier, vol. 242(C), pages 1022-1035.
    16. Borge-Diez, David & Icaza, Daniel & Trujillo-Cueva, Diego Francisco & Açıkkalp, Emin, 2022. "Renewable energy driven heat pumps decarbonization potential in existing residential buildings: Roadmap and case study of Spain," Energy, Elsevier, vol. 247(C).
    17. Wang, Zeyu & Liu, Jian & Zhang, Yuanxin & Yuan, Hongping & Zhang, Ruixue & Srinivasan, Ravi S., 2021. "Practical issues in implementing machine-learning models for building energy efficiency: Moving beyond obstacles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    18. Paulína Šujanová & Monika Rychtáriková & Tiago Sotto Mayor & Affan Hyder, 2019. "A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review," Energies, MDPI, vol. 12(8), pages 1-37, April.
    19. Ranjita Singh & Philip Walsh & Christina Mazza, 2019. "Sustainable Housing: Understanding the Barriers to Adopting Net Zero Energy Homes in Ontario, Canada," Sustainability, MDPI, vol. 11(22), pages 1-21, November.
    20. Shiwen Zhao & Liwen Chen, 2021. "Exploring Residents’ Purchase Intention of Green Housings in China: An Extended Perspective of Perceived Value," IJERPH, MDPI, vol. 18(8), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:152:y:2021:i:c:s1364032121009023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.