IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v137y2021ics1364032120308704.html
   My bibliography  Save this article

Cascading of engineered bioenergy plants and fungi sustainable for low-cost bioethanol and high-value biomaterials under green-like biomass processing

Author

Listed:
  • Wang, Youmei
  • Liu, Peng
  • Zhang, Guifen
  • Yang, Qiaomei
  • Lu, Jun
  • Xia, Tao
  • Peng, Liangcai
  • Wang, Yanting

Abstract

Plant cell walls contain the most abundant sustainable biomass resource for biofuels and biomaterials on the earth. However, lignocellulose recalcitrance generally requires a costly biomass process unacceptable for large-scale bioethanol production with the potential formation of secondary wastes. To address this bottleneck-like biomass recalcitrance issue, this review attempts to connect recent innovation progress regrading up-stream lignocellulose modification, middle-stream cellulases production and down-stream biomass processing. Particularly, the site-specific gene editing is demonstrated for precise and mild modification of plant cell walls to generate recalcitrance-much-reduced cellulose nanofibers, which not only leads to little impact on plant strength and biomass yield, but also causes remarkably enhanced enzymatic saccharification in major bioenergy crops. By selecting the size-reduced cellulose nanofibers of engineered bioenergy crops as enzyme-inducing substrate, fungal strains are then engineered to secret the optimal cellulases enzymes cocktails enabled for complete enzymatic saccharification of diverse lignocellulose residues from cost-effective biomass pretreatments. Consequently, engineered yeast strains could use both hexoses and xylose released from complete saccharification as carbon sources for maximum bioethanol production by an efficient co-fermentation. Finally, the green-like processing technology is introduced to generate biomaterials and biochemicals by using the remaining lignin-rich residues. Therefore, this work has originally proposed a novel strategy that dynamically cascades the engineered bioenergy crops and fungal strains with the advanced biomass process technology, which should be considered as next generation of integrated biotechnology for both cost-effective biofuels production and value-added bioproducts with minimum waste releases into the environment.

Suggested Citation

  • Wang, Youmei & Liu, Peng & Zhang, Guifen & Yang, Qiaomei & Lu, Jun & Xia, Tao & Peng, Liangcai & Wang, Yanting, 2021. "Cascading of engineered bioenergy plants and fungi sustainable for low-cost bioethanol and high-value biomaterials under green-like biomass processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
  • Handle: RePEc:eee:rensus:v:137:y:2021:i:c:s1364032120308704
    DOI: 10.1016/j.rser.2020.110586
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120308704
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110586?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xenakis, Georgios & Ray, Duncan & Mencuccini, Maurizio, 2008. "Sensitivity and uncertainty analysis from a coupled 3-PG and soil organic matter decomposition model," Ecological Modelling, Elsevier, vol. 219(1), pages 1-16.
    2. Halder, Pobitra & Kundu, Sazal & Patel, Savankumar & Setiawan, Adi & Atkin, Rob & Parthasarthy, Rajarathinam & Paz-Ferreiro, Jorge & Surapaneni, Aravind & Shah, Kalpit, 2019. "Progress on the pre-treatment of lignocellulosic biomass employing ionic liquids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 268-292.
    3. Jin, Wenxiang & Chen, Ling & Hu, Meng & Sun, Dan & Li, Ao & Li, Ying & Hu, Zhen & Zhou, Shiguang & Tu, Yuanyuan & Xia, Tao & Wang, Yanting & Xie, Guosheng & Li, Yanbin & Bai, Baowei & Peng, Liangcai, 2016. "Tween-80 is effective for enhancing steam-exploded biomass enzymatic saccharification and ethanol production by specifically lessening cellulase absorption with lignin in common reed," Applied Energy, Elsevier, vol. 175(C), pages 82-90.
    4. Solarte-Toro, Juan Camilo & Romero-García, Juan Miguel & Martínez-Patiño, Juan Carlos & Ruiz-Ramos, Encarnación & Castro-Galiano, Eulogio & Cardona-Alzate, Carlos Ariel, 2019. "Acid pretreatment of lignocellulosic biomass for energy vectors production: A review focused on operational conditions and techno-economic assessment for bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 587-601.
    5. Liu, Zhi-Hua & Le, Rosemary K. & Kosa, Matyas & Yang, Bin & Yuan, Joshua & Ragauskas, Arthur J., 2019. "Identifying and creating pathways to improve biological lignin valorization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 349-362.
    6. Christopher T. Straub & Piyum A. Khatibi & Jack P. Wang & Jonathan M. Conway & Amanda M. Williams-Rhaesa & Ilona M. Peszlen & Vincent L. Chiang & Michael W. W. Adams & Robert M. Kelly, 2019. "Quantitative fermentation of unpretreated transgenic poplar by Caldicellulosiruptor bescii," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    7. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Awad, Faisal N. & Qi, Xianghui & Sahu, J.N., 2019. "Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 105-128.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumari, Rajni & Kumar, Manish & Vivekanand, V. & Pareek, Nidhi, 2023. "Chitin biorefinery: A narrative and prophecy of crustacean shell waste sustainable transformation into bioactives and renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    2. Fu, Yansong & Gao, Hairong & Yu, Hua & Yang, Qiaomei & Peng, Hao & Liu, Peng & Li, Yuqi & Hu, Zhen & Zhang, Ran & Li, Jingyang & Qi, Zhi & Wang, Lingqiang & Peng, Liangcai & Wang, Yanting, 2022. "Specific lignin and cellulose depolymerization of sugarcane bagasse for maximum bioethanol production under optimal chemical fertilizer pretreatment with hemicellulose retention and liquid recycling," Renewable Energy, Elsevier, vol. 200(C), pages 1371-1381.
    3. He, Boyang & Hao, Bo & Yu, Haizhong & Tu, Fen & Wei, Xiaoyang & Xiong, Ke & Zeng, Yajun & Zeng, Hu & Liu, Peng & Tu, Yuanyuan & Wang, Yanting & Kang, Heng & Peng, Liangcai & Xia, Tao, 2022. "Double integrating XYL2 into engineered Saccharomyces cerevisiae strains for consistently enhanced bioethanol production by effective xylose and hexose co-consumption of steam-exploded lignocellulose ," Renewable Energy, Elsevier, vol. 186(C), pages 341-349.
    4. Gao, Hairong & Wang, Yanting & Yang, Qiaomei & Peng, Hao & Li, Yuqi & Zhan, Dan & Wei, Hantian & Lu, Haiwen & Bakr, Mahmoud M.A. & EI-Sheekh, Mostafa M. & Qi, Zhi & Peng, Liangcai & Lin, Xinchun, 2021. "Combined steam explosion and optimized green-liquor pretreatments are effective for complete saccharification to maximize bioethanol production by reducing lignocellulose recalcitrance in one-year-old," Renewable Energy, Elsevier, vol. 175(C), pages 1069-1079.
    5. Ran Zhang & Zhen Hu & Yanting Wang & Huizhen Hu & Fengcheng Li & Mi Li & Arthur Ragauskas & Tao Xia & Heyou Han & Jingfeng Tang & Haizhong Yu & Bingqian Xu & Liangcai Peng, 2023. "Single-molecular insights into the breakpoint of cellulose nanofibers assembly during saccharification," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Fengpei & Shen, Fei & Wan, Xue & Hu, Changwei, 2020. "High yield and high concentration glucose production from corncob residues after tetrahydrofuran + H2O co-solvent pretreatment and followed by enzymatic hydrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    2. Rezania, Shahabaldin & Oryani, Bahareh & Cho, Jinwoo & Talaiekhozani, Amirreza & Sabbagh, Farzaneh & Hashemi, Beshare & Rupani, Parveen Fatemeh & Mohammadi, Ali Akbar, 2020. "Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview," Energy, Elsevier, vol. 199(C).
    3. Tuan Hoang, Anh & Viet Pham, Van, 2021. "2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    4. Yiyang Liu & Jingluo Min & Xingyu Feng & Yue He & Jinze Liu & Yixiao Wang & Jun He & Hainam Do & Valérie Sage & Gang Yang & Yong Sun, 2020. "A Review of Biohydrogen Productions from Lignocellulosic Precursor via Dark Fermentation: Perspective on Hydrolysate Composition and Electron-Equivalent Balance," Energies, MDPI, vol. 13(10), pages 1-27, May.
    5. Basak, Bikram & Jeon, Byong-Hun & Kim, Tae Hyun & Lee, Jae-Cheol & Chatterjee, Pradip Kumar & Lim, Hankwon, 2020. "Dark fermentative hydrogen production from pretreated lignocellulosic biomass: Effects of inhibitory byproducts and recent trends in mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    6. Zhang, Haiyan & Han, Lujia & Dong, Hongmin, 2021. "An insight to pretreatment, enzyme adsorption and enzymatic hydrolysis of lignocellulosic biomass: Experimental and modeling studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    7. He, Boyang & Hao, Bo & Yu, Haizhong & Tu, Fen & Wei, Xiaoyang & Xiong, Ke & Zeng, Yajun & Zeng, Hu & Liu, Peng & Tu, Yuanyuan & Wang, Yanting & Kang, Heng & Peng, Liangcai & Xia, Tao, 2022. "Double integrating XYL2 into engineered Saccharomyces cerevisiae strains for consistently enhanced bioethanol production by effective xylose and hexose co-consumption of steam-exploded lignocellulose ," Renewable Energy, Elsevier, vol. 186(C), pages 341-349.
    8. Zhang, Huaiwen & Yao, Yiqing & Deng, Jun & Zhang, Jian-Li & Qiu, Yaojing & Li, Guofu & Liu, Jian, 2022. "Hydrogen production via anaerobic digestion of coal modified by white-rot fungi and its application benefits analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    9. Yao, Junwei & Xie, Xiaobao & Shi, Qingshan, 2021. "Improving enzymatic saccharification of Chinese silvergrass by FeCl3-catalyzed γ-valerolactone/water pretreatment system," Renewable Energy, Elsevier, vol. 177(C), pages 853-858.
    10. Ulaganathan, Kandasamy & Goud, Sravanthi & Reddy, Madhavi & Kayalvili, Ulaganathan, 2017. "Genome engineering for breaking barriers in lignocellulosic bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1080-1107.
    11. Liu, Zihe & Moradi, Hamideh & Shi, Shuobo & Darvishi, Farshad, 2021. "Yeasts as microbial cell factories for sustainable production of biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    12. Amarnath Krishnamoorthy & Cristina Rodriguez & Andy Durrant, 2022. "Sustainable Approaches to Microalgal Pre-Treatment Techniques for Biodiesel Production: A Review," Sustainability, MDPI, vol. 14(16), pages 1-30, August.
    13. Pretzsch, Hans & Forrester, David I. & Rötzer, Thomas, 2015. "Representation of species mixing in forest growth models. A review and perspective," Ecological Modelling, Elsevier, vol. 313(C), pages 276-292.
    14. Turley, Marianne C. & Ford, E. David, 2009. "Definition and calculation of uncertainty in ecological process models," Ecological Modelling, Elsevier, vol. 220(17), pages 1968-1983.
    15. Bagnara, Maurizio & Van Oijen, Marcel & Cameron, David & Gianelle, Damiano & Magnani, Federico & Sottocornola, Matteo, 2018. "Bayesian calibration of simple forest models with multiplicative mathematical structure: A case study with two Light Use Efficiency models in an alpine forest," Ecological Modelling, Elsevier, vol. 371(C), pages 90-100.
    16. Anu, & Kumar, Anil & Rapoport, Alexander & Kunze, Gotthard & Kumar, Sanjeev & Singh, Davender & Singh, Bijender, 2020. "Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review," Renewable Energy, Elsevier, vol. 160(C), pages 1228-1252.
    17. Kalyani, Dayanand Chandrahas & Zamanzadeh, Mirzaman & Müller, Gerdt & Horn, Svein J., 2017. "Biofuel production from birch wood by combining high solid loading simultaneous saccharification and fermentation and anaerobic digestion," Applied Energy, Elsevier, vol. 193(C), pages 210-219.
    18. Liu, Peng & Li, Ao & Wang, Youmei & Cai, Qiuming & Yu, Haizhong & Li, Yuqi & Peng, Hao & Li, Qian & Wang, Yanting & Wei, Xiaoyang & Zhang, Ran & Tu, Yuanyuan & Xia, Tao & Peng, Liangcai, 2021. "Distinct Miscanthus lignocellulose improves fungus secreting cellulases and xylanases for consistently enhanced biomass saccharification of diverse bioenergy crops," Renewable Energy, Elsevier, vol. 174(C), pages 799-809.
    19. Debnath, Chandrani & Bandyopadhyay, Tarun Kanti & Bhunia, Biswanath & Mishra, Umesh & Narayanasamy, Selvaraju & Muthuraj, Muthusivaramapandian, 2021. "Microalgae: Sustainable resource of carbohydrates in third-generation biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    20. Nölte, Anja & Yousefpour, Rasoul & Hanewinkel, Marc, 2020. "Changes in sessile oak (Quercus petraea) productivity under climate change by improved leaf phenology in the 3-PG model," Ecological Modelling, Elsevier, vol. 438(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:137:y:2021:i:c:s1364032120308704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.