IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v119y2020ics1364032119308391.html
   My bibliography  Save this article

A comparative study of the data-driven day-ahead hourly provincial load forecasting methods: From classical data mining to deep learning

Author

Listed:
  • Liu, Xin
  • Zhang, Zijun
  • Song, Zhe

Abstract

This paper aims at studying the data-driven short-term provincial load forecasting (STLF) problem via an in-depth exploration of benefits brought by the feature engineering and model selection. Three core issues regarding model selections, feature selections, and feature encoding mechanism selections are deeply investigated. The candidate models are grouped into three types: the time series model, classical regression models, and the deep learning models. Three categories of features, historical loads, calendar effects, and weather factors, are considered and utilized in various encoding mechanisms. In experimental studies, an hourly provincial load dataset from Jiangsu Province in China and the corresponding weather records are utilized. The experiments are extensively performed in three parts according to model types. A time series model is conducted individually and the greedy forward wrapper-based feature selections (GFW-FS) are separately performed in six classical regression models to determine suitable encoded features. Deep learning approaches for developing STLF models are also considered. A deep neural network (DNN) model considering selected features of shallow neural networks (SNN) is developed. Meanwhile, a novel convolutional neural network (CNN) based model using GFW-FS is constructed. Through a comparative error analysis of the test set, the intrinsic linear nature among extracted features and the target in the 24-h-ahead provincial STLF problem is discovered. Feature effects are also evaluated. Data-driven models and their considered features, which are more effective to the STLF problem, are reported.

Suggested Citation

  • Liu, Xin & Zhang, Zijun & Song, Zhe, 2020. "A comparative study of the data-driven day-ahead hourly provincial load forecasting methods: From classical data mining to deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
  • Handle: RePEc:eee:rensus:v:119:y:2020:i:c:s1364032119308391
    DOI: 10.1016/j.rser.2019.109632
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119308391
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109632?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singh, Priyanka & Dwivedi, Pragya, 2018. "Integration of new evolutionary approach with artificial neural network for solving short term load forecast problem," Applied Energy, Elsevier, vol. 217(C), pages 537-549.
    2. Pan Duan & Kaigui Xie & Tingting Guo & Xiaogang Huang, 2011. "Short-Term Load Forecasting for Electric Power Systems Using the PSO-SVR and FCM Clustering Techniques," Energies, MDPI, vol. 4(1), pages 1-12, January.
    3. Lusis, Peter & Khalilpour, Kaveh Rajab & Andrew, Lachlan & Liebman, Ariel, 2017. "Short-term residential load forecasting: Impact of calendar effects and forecast granularity," Applied Energy, Elsevier, vol. 205(C), pages 654-669.
    4. Zhang, Wen Yu & Hong, Wei-Chiang & Dong, Yucheng & Tsai, Gary & Sung, Jing-Tian & Fan, Guo-feng, 2012. "Application of SVR with chaotic GASA algorithm in cyclic electric load forecasting," Energy, Elsevier, vol. 45(1), pages 850-858.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yixiang Ma & Lean Yu & Guoxing Zhang, 2022. "A Hybrid Short-Term Load Forecasting Model Based on a Multi-Trait-Driven Methodology and Secondary Decomposition," Energies, MDPI, vol. 15(16), pages 1-20, August.
    2. Zang, Haixiang & Xu, Ruiqi & Cheng, Lilin & Ding, Tao & Liu, Ling & Wei, Zhinong & Sun, Guoqiang, 2021. "Residential load forecasting based on LSTM fusing self-attention mechanism with pooling," Energy, Elsevier, vol. 229(C).
    3. Jasiński, Tomasz, 2022. "A new approach to modeling cycles with summer and winter demand peaks as input variables for deep neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Lee, Juyong & Cho, Youngsang, 2022. "National-scale electricity peak load forecasting: Traditional, machine learning, or hybrid model?," Energy, Elsevier, vol. 239(PD).
    5. Bogdan Bochenek & Jakub Jurasz & Adam Jaczewski & Gabriel Stachura & Piotr Sekuła & Tomasz Strzyżewski & Marcin Wdowikowski & Mariusz Figurski, 2021. "Day-Ahead Wind Power Forecasting in Poland Based on Numerical Weather Prediction," Energies, MDPI, vol. 14(8), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khoshrou, Abdolrahman & Pauwels, Eric J., 2019. "Short-term scenario-based probabilistic load forecasting: A data-driven approach," Applied Energy, Elsevier, vol. 238(C), pages 1258-1268.
    2. Barman, Mayur & Dev Choudhury, Nalin Behari, 2019. "Season specific approach for short-term load forecasting based on hybrid FA-SVM and similarity concept," Energy, Elsevier, vol. 174(C), pages 886-896.
    3. Wenhao Chen & Guangjie Han & Hongbo Zhu & Lyuchao Liao, 2022. "Short-Term Load Forecasting with an Ensemble Model Using Densely Residual Block and Bi-LSTM Based on the Attention Mechanism," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    4. Fan, Guo-Feng & Peng, Li-Ling & Hong, Wei-Chiang, 2018. "Short term load forecasting based on phase space reconstruction algorithm and bi-square kernel regression model," Applied Energy, Elsevier, vol. 224(C), pages 13-33.
    5. Cao, Guohua & Wu, Lijuan, 2016. "Support vector regression with fruit fly optimization algorithm for seasonal electricity consumption forecasting," Energy, Elsevier, vol. 115(P1), pages 734-745.
    6. Zhang, Jiyuan & Tang, Hailong & Chen, Min, 2019. "Linear substitute model-based uncertainty analysis of complicated non-linear energy system performance (case study of an adaptive cycle engine)," Applied Energy, Elsevier, vol. 249(C), pages 87-108.
    7. Jihoon Moon & Junhong Kim & Pilsung Kang & Eenjun Hwang, 2020. "Solving the Cold-Start Problem in Short-Term Load Forecasting Using Tree-Based Methods," Energies, MDPI, vol. 13(4), pages 1-37, February.
    8. Bhattacharjee, Vikram & Khan, Irfan, 2018. "A non-linear convex cost model for economic dispatch in microgrids," Applied Energy, Elsevier, vol. 222(C), pages 637-648.
    9. Yukseltan, E. & Kok, A. & Yucekaya, A. & Bilge, A. & Aktunc, E. Agca & Hekimoglu, M., 2022. "The impact of the COVID-19 pandemic and behavioral restrictions on electricity consumption and the daily demand curve in Turkey," Utilities Policy, Elsevier, vol. 76(C).
    10. Burleyson, Casey D. & Rahman, Aowabin & Rice, Jennie S. & Smith, Amanda D. & Voisin, Nathalie, 2021. "Multiscale effects masked the impact of the COVID-19 pandemic on electricity demand in the United States," Applied Energy, Elsevier, vol. 304(C).
    11. Da Liu & Kun Sun & Han Huang & Pingzhou Tang, 2018. "Monthly Load Forecasting Based on Economic Data by Decomposition Integration Theory," Sustainability, MDPI, vol. 10(9), pages 1-22, September.
    12. Qu, Zhijian & Xu, Juan & Wang, Zixiao & Chi, Rui & Liu, Hanxin, 2021. "Prediction of electricity generation from a combined cycle power plant based on a stacking ensemble and its hyperparameter optimization with a grid-search method," Energy, Elsevier, vol. 227(C).
    13. Ivana Kiprijanovska & Simon Stankoski & Igor Ilievski & Slobodan Jovanovski & Matjaž Gams & Hristijan Gjoreski, 2020. "HousEEC: Day-Ahead Household Electrical Energy Consumption Forecasting Using Deep Learning," Energies, MDPI, vol. 13(10), pages 1-29, May.
    14. Alipour, Panteha & Mukherjee, Sayanti & Nateghi, Roshanak, 2019. "Assessing climate sensitivity of peak electricity load for resilient power systems planning and operation: A study applied to the Texas region," Energy, Elsevier, vol. 185(C), pages 1143-1153.
    15. Félix Iglesias & Wolfgang Kastner, 2013. "Analysis of Similarity Measures in Times Series Clustering for the Discovery of Building Energy Patterns," Energies, MDPI, vol. 6(2), pages 1-19, January.
    16. Yin, Linfei & Xie, Jiaxing, 2021. "Multi-temporal-spatial-scale temporal convolution network for short-term load forecasting of power systems," Applied Energy, Elsevier, vol. 283(C).
    17. Zhu, L. & Li, M.S. & Wu, Q.H. & Jiang, L., 2015. "Short-term natural gas demand prediction based on support vector regression with false neighbours filtered," Energy, Elsevier, vol. 80(C), pages 428-436.
    18. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    19. Zhu, Jiawei & Lin, Yishuai & Lei, Weidong & Liu, Youquan & Tao, Mengling, 2019. "Optimal household appliances scheduling of multiple smart homes using an improved cooperative algorithm," Energy, Elsevier, vol. 171(C), pages 944-955.
    20. Ebrahim Farjah & Mosayeb Bornapour & Taher Niknam & Bahman Bahmanifirouzi, 2012. "Placement of Combined Heat, Power and Hydrogen Production Fuel Cell Power Plants in a Distribution Network," Energies, MDPI, vol. 5(3), pages 1-25, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:119:y:2020:i:c:s1364032119308391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.