IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v99y2016icp524-532.html
   My bibliography  Save this article

Estimation of turbulence intensity using rotor effective wind speed in Lillgrund and Horns Rev-I offshore wind farms

Author

Listed:
  • Göçmen, Tuhfe
  • Giebel, Gregor

Abstract

Turbulence characteristics of the wind farm inflow have a significant impact on the energy production and the lifetime of a wind farm. The common approach is to use the meteorological mast measurements to estimate the turbulence intensity (TI) but they are not always available and the turbulence varies over the extent of the wind farm. This paper describes a method to estimate the TI at individual turbine locations by using the rotor effective wind speed calculated via high frequency turbine data.

Suggested Citation

  • Göçmen, Tuhfe & Giebel, Gregor, 2016. "Estimation of turbulence intensity using rotor effective wind speed in Lillgrund and Horns Rev-I offshore wind farms," Renewable Energy, Elsevier, vol. 99(C), pages 524-532.
  • Handle: RePEc:eee:renene:v:99:y:2016:i:c:p:524-532
    DOI: 10.1016/j.renene.2016.07.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116306346
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.07.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Göçmen, Tuhfe & Laan, Paul van der & Réthoré, Pierre-Elouan & Diaz, Alfredo Peña & Larsen, Gunner Chr. & Ott, Søren, 2016. "Wind turbine wake models developed at the technical university of Denmark: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 752-769.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asadi, Meysam & Pourhossein, Kazem, 2021. "Wind farm site selection considering turbulence intensity," Energy, Elsevier, vol. 236(C).
    2. Yuewei Liu & Shenghui Zhang & Xuejun Chen & Jianzhou Wang, 2018. "Artificial Combined Model Based on Hybrid Nonlinear Neural Network Models and Statistics Linear Models—Research and Application for Wind Speed Forecasting," Sustainability, MDPI, vol. 10(12), pages 1-30, December.
    3. Yazhou Wang & Xin Cai & Shifa Lin & Bofeng Xu & Yuan Zhang & Saixian Bian, 2022. "Study of Tower Clearance Safety Protection during Extreme Gust Based on Wind Turbine Monitoring Data," Energies, MDPI, vol. 15(12), pages 1-11, June.
    4. Li, Li & Wang, Bing & Ge, Mingwei & Huang, Zhi & Li, Xintao & Liu, Yongqian, 2023. "A novel superposition method for streamwise turbulence intensity of wind-turbine wakes," Energy, Elsevier, vol. 276(C).
    5. Dong, Liang & Lio, Wai Hou & Pirrung, Georg Raimund, 2021. "Analysis and design of an adaptive turbulence-based controller for wind turbines," Renewable Energy, Elsevier, vol. 178(C), pages 730-744.
    6. Öztürk, Buğrahan & Hassanein, Abdelrahman & Akpolat, M Tuğrul & Abdulrahim, Anas & Perçin, Mustafa & Uzol, Oğuz, 2023. "On the wake characteristics of a model wind turbine and a porous disc: Effects of freestream turbulence intensity," Renewable Energy, Elsevier, vol. 212(C), pages 238-250.
    7. Nezhad, M. Majidi & Neshat, M. & Heydari, A. & Razmjoo, A. & Piras, G. & Garcia, D. Astiaso, 2021. "A new methodology for offshore wind speed assessment integrating Sentinel-1, ERA-Interim and in-situ measurement," Renewable Energy, Elsevier, vol. 172(C), pages 1301-1313.
    8. Besseau, Romain & Sacchi, Romain & Blanc, Isabelle & Pérez-López, Paula, 2019. "Past, present and future environmental footprint of the Danish wind turbine fleet with LCA_WIND_DK, an online interactive platform," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 274-288.
    9. Christos Galinos & Jonas Kazda & Wai Hou Lio & Gregor Giebel, 2020. "T2FL: An Efficient Model for Wind Turbine Fatigue Damage Prediction for the Two-Turbine Case," Energies, MDPI, vol. 13(6), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pollini, Nicolò, 2022. "Topology optimization of wind farm layouts," Renewable Energy, Elsevier, vol. 195(C), pages 1015-1027.
    2. Li, B. & Zhou, D.L. & Wang, Y. & Shuai, Y. & Liu, Q.Z. & Cai, W.H., 2020. "The design of a small lab-scale wind turbine model with high performance similarity to its utility-scale prototype," Renewable Energy, Elsevier, vol. 149(C), pages 435-444.
    3. Ti, Zilong & Deng, Xiao Wei & Yang, Hongxing, 2020. "Wake modeling of wind turbines using machine learning," Applied Energy, Elsevier, vol. 257(C).
    4. Jiufa Cao & Weijun Zhu & Xinbo Wu & Tongguang Wang & Haoran Xu, 2018. "An Aero-acoustic Noise Distribution Prediction Methodology for Offshore Wind Farms," Energies, MDPI, vol. 12(1), pages 1-16, December.
    5. Ti, Zilong & Deng, Xiao Wei & Zhang, Mingming, 2021. "Artificial Neural Networks based wake model for power prediction of wind farm," Renewable Energy, Elsevier, vol. 172(C), pages 618-631.
    6. Yang, Shanghui & Deng, Xiaowei & Ti, Zilong & Yan, Bowen & Yang, Qingshan, 2022. "Cooperative yaw control of wind farm using a double-layer machine learning framework," Renewable Energy, Elsevier, vol. 193(C), pages 519-537.
    7. Pérez Albornoz, C. & Escalante Soberanis, M.A. & Ramírez Rivera, V. & Rivero, M., 2022. "Review of atmospheric stability estimations for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    8. Dong, Xinghui & Li, Jia & Gao, Di & Zheng, Kai, 2021. "Wind speed modeling for cascade clusters of wind turbines Part 2: Wind speed reduction and aggregation superposition," Energy, Elsevier, vol. 215(PB).
    9. Amin Allah, Veisi & Shafiei Mayam, Mohammad Hossein, 2017. "Large Eddy Simulation of flow around a single and two in-line horizontal-axis wind turbines," Energy, Elsevier, vol. 121(C), pages 533-544.
    10. Bingzheng Dou & Zhanpei Yang & Michele Guala & Timing Qu & Liping Lei & Pan Zeng, 2020. "Comparison of Different Driving Modes for the Wind Turbine Wake in Wind Tunnels," Energies, MDPI, vol. 13(8), pages 1-17, April.
    11. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    12. Dhiman, Harsh S. & Deb, Dipankar & Foley, Aoife M., 2020. "Bilateral Gaussian Wake Model Formulation for Wind Farms: A Forecasting based approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    13. Huang, Ming & Ferreira, Carlos & Sciacchitano, Andrea & Scarano, Fulvio, 2022. "Wake scaling of actuator discs in different aspect ratios," Renewable Energy, Elsevier, vol. 183(C), pages 866-876.
    14. Arabgolarcheh, Alireza & Jannesarahmadi, Sahar & Benini, Ernesto, 2022. "Modeling of near wake characteristics in floating offshore wind turbines using an actuator line method," Renewable Energy, Elsevier, vol. 185(C), pages 871-887.
    15. Christy Pérez & Michel Rivero & Mauricio Escalante & Victor Ramirez & Damien Guilbert, 2023. "Influence of Atmospheric Stability on Wind Turbine Energy Production: A Case Study of the Coastal Region of Yucatan," Energies, MDPI, vol. 16(10), pages 1-20, May.
    16. Zhenzhou Shao & Ying Wu & Li Li & Shuang Han & Yongqian Liu, 2019. "Multiple Wind Turbine Wakes Modeling Considering the Faster Wake Recovery in Overlapped Wakes," Energies, MDPI, vol. 12(4), pages 1-14, February.
    17. Richmond, M. & Sobey, A. & Pandit, R. & Kolios, A., 2020. "Stochastic assessment of aerodynamics within offshore wind farms based on machine-learning," Renewable Energy, Elsevier, vol. 161(C), pages 650-661.
    18. Kuichao Ma & Mohsen Soltani & Amin Hajizadeh & Jiangsheng Zhu & Zhe Chen, 2021. "Wind Farm Power Optimization and Fault Ride-Through under Inter-Turn Short-Circuit Fault," Energies, MDPI, vol. 14(11), pages 1-16, May.
    19. Michael F. Howland & John O. Dabiri, 2019. "Wind Farm Modeling with Interpretable Physics-Informed Machine Learning," Energies, MDPI, vol. 12(14), pages 1-21, July.
    20. Matthias Ritter & Simone Pieralli & Martin Odening, 2017. "Neighborhood Effects in Wind Farm Performance: A Regression Approach," Energies, MDPI, vol. 10(3), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:99:y:2016:i:c:p:524-532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.