IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v178y2021icp730-744.html
   My bibliography  Save this article

Analysis and design of an adaptive turbulence-based controller for wind turbines

Author

Listed:
  • Dong, Liang
  • Lio, Wai Hou
  • Pirrung, Georg Raimund

Abstract

This work aims to explore methods to retain the robustness and performance of a wind turbine controller under different wind conditions. A method of optimizing the control parameters in response to different turbulence intensity is proposed, which is referred to as adaptive turbulence-based control (ATBC). Specifically, the power spectrum of the rotor effective wind speed has been derived and the analytical expression is explicitly considered in the control optimization. Also, a linear aero-servo-elastic (ASE) model is established, which captures the closed-loop dynamics of the rotor speed, pitch activity and tower fore-aft vibration mode. Subsequently, a computationally-efficient component damage prediction method is proposed that uses rainflow counting and inverse fast Fourier transform. Based on the proposed ASE model and damage prediction method, the controller optimization problem is established using a quadratic cost function to achieve the optimal trade-off between the rotor speed variation and the damage of turbine components. A model validation shows that the proposed scheme is able to predict the component fatigue load and the rotor speed variation in an efficient way. Finally, one design case is given to illustrate the procedure of ATBC and to demonstrate the feasibility of the proposed method in different operating wind conditions.

Suggested Citation

  • Dong, Liang & Lio, Wai Hou & Pirrung, Georg Raimund, 2021. "Analysis and design of an adaptive turbulence-based controller for wind turbines," Renewable Energy, Elsevier, vol. 178(C), pages 730-744.
  • Handle: RePEc:eee:renene:v:178:y:2021:i:c:p:730-744
    DOI: 10.1016/j.renene.2021.06.080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121009460
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.06.080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jena, Debashisha & Rajendran, Saravanakumar, 2015. "A review of estimation of effective wind speed based control of wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1046-1062.
    2. Abdallah, I. & Natarajan, A. & Sørensen, J.D., 2016. "Influence of the control system on wind turbine loads during power production in extreme turbulence: Structural reliability," Renewable Energy, Elsevier, vol. 87(P1), pages 464-477.
    3. Göçmen, Tuhfe & Giebel, Gregor, 2016. "Estimation of turbulence intensity using rotor effective wind speed in Lillgrund and Horns Rev-I offshore wind farms," Renewable Energy, Elsevier, vol. 99(C), pages 524-532.
    4. Xiao Chen & Martin A. Eder & Asm Shihavuddin & Dan Zheng, 2021. "A Human-Cyber-Physical System toward Intelligent Wind Turbine Operation and Maintenance," Sustainability, MDPI, vol. 13(2), pages 1-10, January.
    5. Lio, Wai Hou & Li, Ang & Meng, Fanzhong, 2021. "Real-time rotor effective wind speed estimation using Gaussian process regression and Kalman filtering," Renewable Energy, Elsevier, vol. 169(C), pages 670-686.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ágota Bányai & Tamás Bányai, 2022. "Real-Time Maintenance Policy Optimization in Manufacturing Systems: An Energy Efficiency and Emission-Based Approach," Sustainability, MDPI, vol. 14(17), pages 1-15, August.
    2. Chen, Peng & Han, Dezhi, 2022. "Effective wind speed estimation study of the wind turbine based on deep learning," Energy, Elsevier, vol. 247(C).
    3. Kumar, Dipesh & Chatterjee, Kalyan, 2016. "A review of conventional and advanced MPPT algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 957-970.
    4. Öztürk, Buğrahan & Hassanein, Abdelrahman & Akpolat, M Tuğrul & Abdulrahim, Anas & Perçin, Mustafa & Uzol, Oğuz, 2023. "On the wake characteristics of a model wind turbine and a porous disc: Effects of freestream turbulence intensity," Renewable Energy, Elsevier, vol. 212(C), pages 238-250.
    5. Jastrzebska, Agnieszka & Morales Hernández, Alejandro & Nápoles, Gonzalo & Salgueiro, Yamisleydi & Vanhoof, Koen, 2022. "Measuring wind turbine health using fuzzy-concept-based drifting models," Renewable Energy, Elsevier, vol. 190(C), pages 730-740.
    6. Adrian Gambier, 2021. "Pitch Control of Three Bladed Large Wind Energy Converters—A Review," Energies, MDPI, vol. 14(23), pages 1-24, December.
    7. Murthy, K.S.R. & Rahi, O.P., 2017. "A comprehensive review of wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1320-1342.
    8. Stephany Isabel Vallarta-Serrano & Edgar Santoyo-Castelazo & Edgar Santoyo & Esther O. García-Mandujano & Holkan Vázquez-Sánchez, 2023. "Integrated Sustainability Assessment Framework of Industry 4.0 from an Energy Systems Thinking Perspective: Bibliometric Analysis and Systematic Literature Review," Energies, MDPI, vol. 16(14), pages 1-30, July.
    9. Sindhwani, Rahul & Afridi, Shayan & Kumar, Anil & Banaitis, Audrius & Luthra, Sunil & Singh, Punj Lata, 2022. "Can industry 5.0 revolutionize the wave of resilience and social value creation? A multi-criteria framework to analyze enablers," Technology in Society, Elsevier, vol. 68(C).
    10. Zhiyu Jiang & Weifei Hu & Wenbin Dong & Zhen Gao & Zhengru Ren, 2017. "Structural Reliability Analysis of Wind Turbines: A Review," Energies, MDPI, vol. 10(12), pages 1-25, December.
    11. Assareh, Ehsanolah & Biglari, Mojtaba, 2015. "A novel approach to capture the maximum power from variable speed wind turbines using PI controller, RBF neural network and GSA evolutionary algorithm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1023-1037.
    12. Bracale, Antonio & Carpinelli, Guido & De Falco, Pasquale, 2017. "A new finite mixture distribution and its expectation-maximization procedure for extreme wind speed characterization," Renewable Energy, Elsevier, vol. 113(C), pages 1366-1377.
    13. Moodi, Hoda & Bustan, Danyal, 2019. "Wind turbine control using T-S systems with nonlinear consequent parts," Energy, Elsevier, vol. 172(C), pages 922-931.
    14. Nezhad, M. Majidi & Neshat, M. & Heydari, A. & Razmjoo, A. & Piras, G. & Garcia, D. Astiaso, 2021. "A new methodology for offshore wind speed assessment integrating Sentinel-1, ERA-Interim and in-situ measurement," Renewable Energy, Elsevier, vol. 172(C), pages 1301-1313.
    15. Wu, Guangxing & Zhang, Chaoyu & Cai, Chang & Yang, Ke & Shi, Kezhong, 2020. "Uncertainty prediction on the angle of attack of wind turbine blades based on the field measurements," Energy, Elsevier, vol. 200(C).
    16. Dai, S.F. & Liu, H.J. & Chu, Y.J. & Lam, H.F. & Peng, H.Y., 2022. "Impact of corner modification on wind characteristics and wind energy potential over flat roofs of tall buildings," Energy, Elsevier, vol. 241(C).
    17. Chengcheng Gu & Hua Li, 2022. "Review on Deep Learning Research and Applications in Wind and Wave Energy," Energies, MDPI, vol. 15(4), pages 1-19, February.
    18. Habibi, Hamed & Howard, Ian & Simani, Silvio, 2019. "Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review," Renewable Energy, Elsevier, vol. 135(C), pages 877-896.
    19. Pan, Lin & Xiong, Yong & Zhu, Ze & Wang, Leichong, 2022. "Research on variable pitch control strategy of direct-driven offshore wind turbine using KELM wind speed soft sensor," Renewable Energy, Elsevier, vol. 184(C), pages 1002-1017.
    20. Adrian Gambier & Yul Yunazwin Nazaruddin, 2022. "Modelling the Wind Turbine by Using the Tip-Speed Ratio for Estimation and Control," Energies, MDPI, vol. 15(24), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:178:y:2021:i:c:p:730-744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.