IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v97y2016icp358-372.html
   My bibliography  Save this article

Damage mechanics based design methodology for tidal current turbine composite blades

Author

Listed:
  • Fagan, Edward M.
  • Kennedy, Ciaran R.
  • Leen, Sean B.
  • Goggins, Jamie

Abstract

A material model based on the Puck phenomenological failure criteria for fibre and inter-fibre failure of glass-fibre and carbon-fibre reinforced polymer composites is presented. The model is applied through a user-defined material subroutine for 3D shell elements. Sub-modelling is used for detailed analysis of the highest stressed regions in the blades. The material model is incorporated into a methodology for the design and analysis of composite tidal current turbine blades. The methodology employs an iterative design process with respect to a number of failure criteria to ensure optimal structural and material performance of the blade. The methodology is automated using the Python programming language to enable efficient variation of model parameters for various design conditions. The forces acting on the blades are determined from blade element momentum theory for a number of turbine operating conditions. The results of a design case study for a typical horizontal axis device are presented to demonstrate the methodology.

Suggested Citation

  • Fagan, Edward M. & Kennedy, Ciaran R. & Leen, Sean B. & Goggins, Jamie, 2016. "Damage mechanics based design methodology for tidal current turbine composite blades," Renewable Energy, Elsevier, vol. 97(C), pages 358-372.
  • Handle: RePEc:eee:renene:v:97:y:2016:i:c:p:358-372
    DOI: 10.1016/j.renene.2016.05.093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116305109
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.05.093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rourke, Fergal O. & Boyle, Fergal & Reynolds, Anthony, 2010. "Marine current energy devices: Current status and possible future applications in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1026-1036, April.
    2. Grogan, D.M. & Leen, S.B. & Kennedy, C.R. & Ó Brádaigh, C.M., 2013. "Design of composite tidal turbine blades," Renewable Energy, Elsevier, vol. 57(C), pages 151-162.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kennedy, Ciaran R. & Jaksic, Vesna & Leen, Sean B. & Brádaigh, Conchúr M.Ó., 2018. "Fatigue life of pitch- and stall-regulated composite tidal turbine blades," Renewable Energy, Elsevier, vol. 121(C), pages 688-699.
    2. Finnegan, William & Fagan, Edward & Flanagan, Tomas & Doyle, Adrian & Goggins, Jamie, 2020. "Operational fatigue loading on tidal turbine blades using computational fluid dynamics," Renewable Energy, Elsevier, vol. 152(C), pages 430-440.
    3. Nachtane, M. & Tarfaoui, M. & Ait Mohammed, M. & Saifaoui, D. & El Moumen, A., 2020. "Effects of environmental exposure on the mechanical properties of composite tidal current turbine," Renewable Energy, Elsevier, vol. 156(C), pages 1132-1145.
    4. Wang, Longyan & Xu, Jian & Wang, Zilu & Zhang, Bowen & Luo, Zhaohui & Yuan, Jianping & Tan, Andy C.C., 2023. "A novel cost-efficient deep learning framework for static fluid–structure interaction analysis of hydrofoil in tidal turbine morphing blade," Renewable Energy, Elsevier, vol. 208(C), pages 367-384.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calero Quesada, María Concepción & García Lafuente, Jesús & Sánchez Garrido, José Carlos & Sammartino, Simone & Delgado, Javier, 2014. "Energy of marine currents in the Strait of Gibraltar and its potential as a renewable energy resource," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 98-109.
    2. Yuce, M. Ishak & Muratoglu, Abdullah, 2015. "Hydrokinetic energy conversion systems: A technology status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 72-82.
    3. Chen, Long & Lam, Wei-Haur, 2015. "A review of survivability and remedial actions of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 891-900.
    4. Abutunis, A. & Taylor, G. & Fal, M. & Chandrashekhara, K., 2020. "Experimental evaluation of coaxial horizontal axis hydrokinetic composite turbine system," Renewable Energy, Elsevier, vol. 157(C), pages 232-245.
    5. Kennedy, Ciaran R. & Jaksic, Vesna & Leen, Sean B. & Brádaigh, Conchúr M.Ó., 2018. "Fatigue life of pitch- and stall-regulated composite tidal turbine blades," Renewable Energy, Elsevier, vol. 121(C), pages 688-699.
    6. Li, Binghui & de Queiroz, Anderson Rodrigo & DeCarolis, Joseph F. & Bane, John & He, Ruoying & Keeler, Andrew G. & Neary, Vincent S., 2017. "The economics of electricity generation from Gulf Stream currents," Energy, Elsevier, vol. 134(C), pages 649-658.
    7. Ozkop, Emre & Altas, Ismail H., 2017. "Control, power and electrical components in wave energy conversion systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 106-115.
    8. Fox, Clive J. & Benjamins, Steven & Masden, Elizabeth A. & Miller, Raeanne, 2018. "Challenges and opportunities in monitoring the impacts of tidal-stream energy devices on marine vertebrates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1926-1938.
    9. Akhyani, Mahmood & Chegini, Vahid & Aliakbari Bidokhti, Abbasali, 2015. "An appraisal of the power density of current profile in the Persian Gulf and the Gulf of Oman using numerical simulation," Renewable Energy, Elsevier, vol. 74(C), pages 307-317.
    10. Roche, R.C. & Walker-Springett, K. & Robins, P.E. & Jones, J. & Veneruso, G. & Whitton, T.A. & Piano, M. & Ward, S.L. & Duce, C.E. & Waggitt, J.J. & Walker-Springett, G.R. & Neill, S.P. & Lewis, M.J. , 2016. "Research priorities for assessing potential impacts of emerging marine renewable energy technologies: Insights from developments in Wales (UK)," Renewable Energy, Elsevier, vol. 99(C), pages 1327-1341.
    11. Astariz, S. & Iglesias, G., 2015. "The economics of wave energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 397-408.
    12. Barbarelli, Silvio & Florio, Gaetano & Lo Zupone, Giacomo & Scornaienchi, Nino Michele, 2018. "First techno-economic evaluation of array configuration of self-balancing tidal kinetic turbines," Renewable Energy, Elsevier, vol. 129(PA), pages 183-200.
    13. Lam, Wei-Haur & Chen, Long & Hashim, Roslan, 2015. "Analytical wake model of tidal current turbine," Energy, Elsevier, vol. 79(C), pages 512-521.
    14. Ossai, Chinedu I., 2017. "Optimal renewable energy generation – Approaches for managing ageing assets mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 269-280.
    15. Mujahid Badshah & Saeed Badshah & James VanZwieten & Sakhi Jan & Muhammad Amir & Suheel Abdullah Malik, 2019. "Coupled Fluid-Structure Interaction Modelling of Loads Variation and Fatigue Life of a Full-Scale Tidal Turbine under the Effect of Velocity Profile," Energies, MDPI, vol. 12(11), pages 1-22, June.
    16. Pyakurel, Parakram & VanZwieten, James H. & Sultan, Cornel & Dhanak, Manhar & Xiros, Nikolaos I., 2017. "Numerical simulation and dynamical response of a moored hydrokinetic turbine operating in the wake of an upstream turbine for control design," Renewable Energy, Elsevier, vol. 114(PB), pages 1134-1145.
    17. Operacz, Agnieszka, 2017. "The term “effective hydropower potential” based on sustainable development – an initial case study of the Raba river in Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1453-1463.
    18. Tianming Zhang & Wei Haur Lam & Yonggang Cui & Jinxin Jiang & Chong Sun & Jianhua Guo & Yanbo Ma & Shuguang Wang & Su Shiung Lam & Gerard Hamill, 2019. "Tip-Bed Velocity and Scour Depth of Horizontal-Axis Tidal Turbine with Consideration of Tip Clearance," Energies, MDPI, vol. 12(12), pages 1-24, June.
    19. Abutunis, Abdulaziz & Hussein, Rafid & Chandrashekhara, K., 2019. "A neural network approach to enhance blade element momentum theory performance for horizontal axis hydrokinetic turbine application," Renewable Energy, Elsevier, vol. 136(C), pages 1281-1293.
    20. Möller, N.J. & Kim, H. & Neary, V.S. & García, M.H. & Chamorro, L.P., 2016. "On the near-wall effects induced by an axial-flow rotor," Renewable Energy, Elsevier, vol. 91(C), pages 524-530.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:97:y:2016:i:c:p:358-372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.