IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v156y2020icp1132-1145.html
   My bibliography  Save this article

Effects of environmental exposure on the mechanical properties of composite tidal current turbine

Author

Listed:
  • Nachtane, M.
  • Tarfaoui, M.
  • Ait Mohammed, M.
  • Saifaoui, D.
  • El Moumen, A.

Abstract

In order to meet the growing demand for energy and also to fight against global warming, Renewable Marine Energies (RME) appeared as a great opportunity for a real ecological and industrial choice. Tidal current turbines are used to extract this energy and installed on the seabed at locations where the nozzle can be prone to the accidental impact and critical loads. The principal objective of this research is to investigate the effects of environmental exposure on the mechanical properties of composite tidal current turbine, the most advanced features currently available in finite element (FE) Abaqus/Explicit have been employed to simulate the behavior of the composite nozzle under static and dynamic loading conditions. To investigate this situation, a parametric analysis is conducted which deals with the effect of velocity and geometry of the impactor. The mechanical behavior has been analyzed as both kinematic effect due to deflection of the composite structure and dynamic effect caused by the interaction between the impactor and the hydrodynamic and hydrostatic pressures over the loading. The stress and the deformation distribution are presented. On the other hand, damage modeling was formulated based on Hashin criteria for intra-laminar damage. This has been accomplished by forming a user-created routine (VUMAT) and executing it in the Abaqus software.

Suggested Citation

  • Nachtane, M. & Tarfaoui, M. & Ait Mohammed, M. & Saifaoui, D. & El Moumen, A., 2020. "Effects of environmental exposure on the mechanical properties of composite tidal current turbine," Renewable Energy, Elsevier, vol. 156(C), pages 1132-1145.
  • Handle: RePEc:eee:renene:v:156:y:2020:i:c:p:1132-1145
    DOI: 10.1016/j.renene.2020.04.126
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120306649
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.04.126?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fagan, Edward M. & Kennedy, Ciaran R. & Leen, Sean B. & Goggins, Jamie, 2016. "Damage mechanics based design methodology for tidal current turbine composite blades," Renewable Energy, Elsevier, vol. 97(C), pages 358-372.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kennedy, Ciaran R. & Jaksic, Vesna & Leen, Sean B. & Brádaigh, Conchúr M.Ó., 2018. "Fatigue life of pitch- and stall-regulated composite tidal turbine blades," Renewable Energy, Elsevier, vol. 121(C), pages 688-699.
    2. Wang, Longyan & Xu, Jian & Wang, Zilu & Zhang, Bowen & Luo, Zhaohui & Yuan, Jianping & Tan, Andy C.C., 2023. "A novel cost-efficient deep learning framework for static fluid–structure interaction analysis of hydrofoil in tidal turbine morphing blade," Renewable Energy, Elsevier, vol. 208(C), pages 367-384.
    3. Finnegan, William & Fagan, Edward & Flanagan, Tomas & Doyle, Adrian & Goggins, Jamie, 2020. "Operational fatigue loading on tidal turbine blades using computational fluid dynamics," Renewable Energy, Elsevier, vol. 152(C), pages 430-440.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:156:y:2020:i:c:p:1132-1145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.