IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v96y2016ipap209-219.html
   My bibliography  Save this article

Effect of guide wall on the potential of a solar chimney power plant

Author

Listed:
  • Hu, Siyang
  • Leung, Dennis Y.C.
  • Chen, Michael Z.Q.
  • Chan, John C.Y.

Abstract

A solar chimney power plant (SCPP) converts solar thermal energy into electricity by generating a buoyant flow in a chimney. To assist the air flow in shifting its direction from horizontal to vertical, a guide wall (GW) is usually set in the collector-to-chimney transition region. The primary objective of this study is to examine the impact of the GW geometry on the power output of a SCPP. A reduction in mass flow rate after adding a GW in the system was observed in a small-scale experimental prototype. Numerical simulations on a large-scale SCPP further found that the mass flow rate was linearly and inversely proportional to the increase of GW height. The driving force, however, nonlinearly increased with increasing the GW height. Subsequently, the potential maximum power output, which was mainly governed by the driving force, increased with increasing the GW height. Furthermore, a divergent-chimney system which can improve the performance of SCPPs had different reactions with the geometry of GWs compared with a cylindrical-chimney system. Under the optimal GW configuration, the power output of the SCPP increased by ∼40% in a cylindrical-chimney system and by ∼9.0% in a divergent-chimney system with respect to the system without a guide wall.

Suggested Citation

  • Hu, Siyang & Leung, Dennis Y.C. & Chen, Michael Z.Q. & Chan, John C.Y., 2016. "Effect of guide wall on the potential of a solar chimney power plant," Renewable Energy, Elsevier, vol. 96(PA), pages 209-219.
  • Handle: RePEc:eee:renene:v:96:y:2016:i:pa:p:209-219
    DOI: 10.1016/j.renene.2016.04.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116303421
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.04.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dai, Y.J & Huang, H.B & Wang, R.Z, 2003. "Case study of solar chimney power plants in Northwestern regions of China," Renewable Energy, Elsevier, vol. 28(8), pages 1295-1304.
    2. Gholamalizadeh, Ehsan & Kim, Man-Hoe, 2014. "Three-dimensional CFD analysis for simulating the greenhouse effect in solar chimney power plants using a two-band radiation model," Renewable Energy, Elsevier, vol. 63(C), pages 498-506.
    3. Koonsrisuk, Atit, 2012. "Mathematical modeling of sloped solar chimney power plants," Energy, Elsevier, vol. 47(1), pages 582-589.
    4. Koonsrisuk, Atit & Chitsomboon, Tawit, 2013. "Effects of flow area changes on the potential of solar chimney power plants," Energy, Elsevier, vol. 51(C), pages 400-406.
    5. Koonsrisuk, Atit & Chitsomboon, Tawit, 2013. "Mathematical modeling of solar chimney power plants," Energy, Elsevier, vol. 51(C), pages 314-322.
    6. Guo, Peng-hua & Li, Jing-yin & Wang, Yuan, 2014. "Numerical simulations of solar chimney power plant with radiation model," Renewable Energy, Elsevier, vol. 62(C), pages 24-30.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Milani Shirvan, Kamel & Mirzakhanlari, Soroush & Mamourian, Mojtaba & Kalogirou, Soteris A., 2017. "Optimization of effective parameters on solar updraft tower to achieve potential maximum power output: A sensitivity analysis and numerical simulation," Applied Energy, Elsevier, vol. 195(C), pages 725-737.
    2. Fallah, Seyyed Hossein & Valipour, Mohammad Sadegh, 2022. "Numerical investigation of a small scale sloped solar chimney power plant," Renewable Energy, Elsevier, vol. 183(C), pages 1-11.
    3. Seungjin Lee & Yoon Seok Kim & Joong Yull Park, 2018. "Numerical Investigation on the Effects of Baffles with Various Thermal and Geometrical Conditions on Thermo-Fluid Dynamics and Kinetic Power of a Solar Updraft Tower," Energies, MDPI, vol. 11(9), pages 1-14, August.
    4. Hu, Siyang & Leung, Dennis Y.C. & Chan, John C.Y., 2017. "Impact of the geometry of divergent chimneys on the power output of a solar chimney power plant," Energy, Elsevier, vol. 120(C), pages 1-11.
    5. Hu, Siyang & Leung, Dennis Y.C. & Chan, John C.Y., 2017. "Numerical modelling and comparison of the performance of diffuser-type solar chimneys for power generation," Applied Energy, Elsevier, vol. 204(C), pages 948-957.
    6. Seungjin Lee & Saerom Kim & Jonghyun Chae & Joong Yull Park, 2019. "Additive Aerodynamic and Thermal Effects of a Central Guide Post and Baffle Installed in a Solar Updraft Tower," Energies, MDPI, vol. 12(18), pages 1-13, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kasaeian, A.B. & Molana, Sh. & Rahmani, K. & Wen, D., 2017. "A review on solar chimney systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 954-987.
    2. Gholamalizadeh, Ehsan & Kim, Man-Hoe, 2014. "Thermo-economic triple-objective optimization of a solar chimney power plant using genetic algorithms," Energy, Elsevier, vol. 70(C), pages 204-211.
    3. Setareh, Milad, 2021. "Comprehensive mathematical study on solar chimney powerplant," Renewable Energy, Elsevier, vol. 175(C), pages 470-485.
    4. Ming, Tingzhen & Wu, Yongjia & de_Richter, Renaud K. & Liu, Wei & Sherif, S.A., 2017. "Solar updraft power plant system: A brief review and a case study on a new system with radial partition walls in its collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 472-487.
    5. Ehsan Gholamalizadeh & Man-Hoe Kim, 2016. "Multi-Objective Optimization of a Solar Chimney Power Plant with Inclined Collector Roof Using Genetic Algorithm," Energies, MDPI, vol. 9(11), pages 1-14, November.
    6. Gholamalizadeh, Ehsan & Kim, Man-Hoe, 2016. "CFD (computational fluid dynamics) analysis of a solar-chimney power plant with inclined collector roof," Energy, Elsevier, vol. 107(C), pages 661-667.
    7. Hu, Siyang & Leung, Dennis Y.C. & Chan, John C.Y., 2017. "Impact of the geometry of divergent chimneys on the power output of a solar chimney power plant," Energy, Elsevier, vol. 120(C), pages 1-11.
    8. Hu, Siyang & Leung, Dennis Y.C. & Chan, John C.Y., 2017. "Numerical modelling and comparison of the performance of diffuser-type solar chimneys for power generation," Applied Energy, Elsevier, vol. 204(C), pages 948-957.
    9. Hassan, Aakash & Ali, Majid & Waqas, Adeel, 2018. "Numerical investigation on performance of solar chimney power plant by varying collector slope and chimney diverging angle," Energy, Elsevier, vol. 142(C), pages 411-425.
    10. Tawalbeh, Muhammad & Mohammed, Shima & Alnaqbi, Aaesha & Alshehhi, Shouq & Al-Othman, Amani, 2023. "Analysis for hybrid photovoltaic/solar chimney seawater desalination plant: A CFD simulation in Sharjah, United Arab Emirates," Renewable Energy, Elsevier, vol. 202(C), pages 667-685.
    11. Okoye, Chiemeka Onyeka & Taylan, Onur, 2017. "Performance analysis of a solar chimney power plant for rural areas in Nigeria," Renewable Energy, Elsevier, vol. 104(C), pages 96-108.
    12. A Jameei & P Akbarzadeh & H Zolfagharzadeh & SR Eghbali, 2019. "Numerical study of the influence of geometric form of chimney on the performance of a solar updraft tower power plant," Energy & Environment, , vol. 30(4), pages 685-706, June.
    13. Ehsan Gholamalizadeh & Jae Dong Chung, 2017. "A Comparative Study of CFD Models of a Real Wind Turbine in Solar Chimney Power Plants," Energies, MDPI, vol. 10(10), pages 1-11, October.
    14. Weli, Rizgar Bakr & Atrooshi, Soorkeu A. & Schwarze, Ruediger, 2021. "Investigation of the performance parameters of a sloped collector solar chimney model – An adaptation for the North of Iraq," Renewable Energy, Elsevier, vol. 176(C), pages 504-519.
    15. Rabehi, Rayan & Chaker, Abla & Ming, Tingzhen & Gong, Tingrui, 2018. "Numerical simulation of solar chimney power plant adopting the fan model," Renewable Energy, Elsevier, vol. 126(C), pages 1093-1101.
    16. Yuji Ohya & Masaki Wataka & Koichi Watanabe & Takanori Uchida, 2016. "Laboratory Experiment and Numerical Analysis of a New Type of Solar Tower Efficiently Generating a Thermal Updraft," Energies, MDPI, vol. 9(12), pages 1-14, December.
    17. Habibollahzade, Ali, 2019. "Employing photovoltaic/thermal panels as a solar chimney roof: 3E analyses and multi-objective optimization," Energy, Elsevier, vol. 166(C), pages 118-130.
    18. Zygmunt Lipnicki & Marta Gortych & Anna Staszczuk & Tadeusz Kuczyński & Piotr Grabas, 2019. "Analytical and Experimental Investigation of the Solar Chimney System," Energies, MDPI, vol. 12(11), pages 1-13, May.
    19. Koonsrisuk, Atit & Chitsomboon, Tawit, 2013. "Mathematical modeling of solar chimney power plants," Energy, Elsevier, vol. 51(C), pages 314-322.
    20. Chan, Chuen-yu & Hu, Si-yang & Raynal, Marc & Leung, Dennis Y.C. & Chang, Alfred P.S. & Yao, Jin-biao, 2014. "A telescopic divergent chimney for power generation based on forced air movement: Principle and theoretical formulation," Applied Energy, Elsevier, vol. 136(C), pages 873-880.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:96:y:2016:i:pa:p:209-219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.