IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v92y2016icp462-473.html
   My bibliography  Save this article

Three-dimensional experiment and numerical simulation of the discharge performance of sluice passageway for tidal power plant

Author

Listed:
  • Oh, Sang-Ho
  • Lee, Kwang Soo
  • Jeong, Weon-Mu

Abstract

In this study, the discharge performance of the sluice passageway of tidal power plants was investigated based on the experiments conducted in a planar open channel and three-dimensional numerical simulations. By conducting the experiments in a planar channel, it was possible to reproduce the three-dimensional flow field around the sluice passageways similar to the field condition. The discharge capability of the passageway was estimated under various flow conditions with five different channel bathymetries. The estimates of the discharge coefficient generally ranged from 1.3 to 1.45, which are significantly smaller than the values obtained from the previous study based on the two-dimensional experiment. In addition, the experimental results showed a considerable difference in the discharge coefficient among the test cases, demonstrating an apparent influence of channel bed topography on the discharge performance. Based on an intensive parametric study carried out using the numerical simulations, an optimal configuration of the width, slope, and bottom length of the apron section was suggested for maximizing the discharge capability of the sluice passageway.

Suggested Citation

  • Oh, Sang-Ho & Lee, Kwang Soo & Jeong, Weon-Mu, 2016. "Three-dimensional experiment and numerical simulation of the discharge performance of sluice passageway for tidal power plant," Renewable Energy, Elsevier, vol. 92(C), pages 462-473.
  • Handle: RePEc:eee:renene:v:92:y:2016:i:c:p:462-473
    DOI: 10.1016/j.renene.2016.02.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116301240
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.02.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Dal Soo & Oh, Sang-Ho & Yi, Jin-Hak & Park, Woo-Sun & Cho, Hyu-Sang & Kim, Duk-Gu & Eom, Hyun-Min & Ahn, Suk-Jin, 2010. "Experimental investigation on the relationship between sluice caisson shape of tidal power plant and the water discharge capability," Renewable Energy, Elsevier, vol. 35(10), pages 2243-2256.
    2. Charlier, Roger H., 2003. "Sustainable co-generation from the tides:: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(3), pages 187-213, June.
    3. Xia, Junqiang & Falconer, Roger A. & Lin, Binliang & Tan, Guangming, 2012. "Estimation of annual energy output from a tidal barrage using two different methods," Applied Energy, Elsevier, vol. 93(C), pages 327-336.
    4. Kim, Gunwoo & Lee, Myung Eun & Lee, Kwang Soo & Park, Jin-Soon & Jeong, Weon Mu & Kang, Sok Kuh & Soh, Jae-Gwi & Kim, Hanna, 2012. "An overview of ocean renewable energy resources in Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2278-2288.
    5. Baker, Clive, 1991. "Tidal power," Energy Policy, Elsevier, vol. 19(8), pages 792-797, October.
    6. O Rourke, Fergal & Boyle, Fergal & Reynolds, Anthony, 2010. "Tidal energy update 2009," Applied Energy, Elsevier, vol. 87(2), pages 398-409, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahn, Soo-Hwang & Tian, Hong & Cao, Jingwei & Duo, Wenzhi & Wang, Zhengwei & Cui, Jianhua & Chen, Lin & Li, Yang & Huang, Guoping & Yu, Yunpeng, 2023. "Hydraulic performances of a bulb turbine with full field reservoir model based on entropy production analysis," Renewable Energy, Elsevier, vol. 211(C), pages 347-360.
    2. Neill, Simon P. & Angeloudis, Athanasios & Robins, Peter E. & Walkington, Ian & Ward, Sophie L. & Masters, Ian & Lewis, Matt J. & Piano, Marco & Avdis, Alexandros & Piggott, Matthew D. & Aggidis, Geor, 2018. "Tidal range energy resource and optimization – Past perspectives and future challenges," Renewable Energy, Elsevier, vol. 127(C), pages 763-778.
    3. Ahn, Soo-Hwang & Zhou, Xuezhi & He, Lingyan & Luo, Yongyao & Wang, Zhengwei, 2020. "Numerical estimation of prototype hydraulic efficiency in a low head power station based on gross head conditions," Renewable Energy, Elsevier, vol. 153(C), pages 175-181.
    4. Angeloudis, Athanasios & Kramer, Stephan C. & Avdis, Alexandros & Piggott, Matthew D., 2018. "Optimising tidal range power plant operation," Applied Energy, Elsevier, vol. 212(C), pages 680-690.
    5. Angeloudis, Athanasios & Falconer, Roger A., 2017. "Sensitivity of tidal lagoon and barrage hydrodynamic impacts and energy outputs to operational characteristics," Renewable Energy, Elsevier, vol. 114(PA), pages 337-351.
    6. Kim, J.W. & Woo, S.-B., 2023. "A numerical approach to the treatment of submerged water exchange processes through the sluice gates of a tidal power plant," Renewable Energy, Elsevier, vol. 219(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xia, Junqiang & Falconer, Roger A. & Lin, Binliang & Tan, Guangming, 2012. "Estimation of annual energy output from a tidal barrage using two different methods," Applied Energy, Elsevier, vol. 93(C), pages 327-336.
    2. Angeloudis, Athanasios & Kramer, Stephan C. & Avdis, Alexandros & Piggott, Matthew D., 2018. "Optimising tidal range power plant operation," Applied Energy, Elsevier, vol. 212(C), pages 680-690.
    3. Park, Young Hyun, 2017. "Analysis of characteristics of Dynamic Tidal Power on the west coast of Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 461-474.
    4. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Francisco, Francisco & Molander, Sverker, 2012. "Simplified site-screening method for micro tidal current turbines applied in Mozambique," Renewable Energy, Elsevier, vol. 44(C), pages 414-422.
    5. Lisboa, A.C. & Vieira, T.L. & Guedes, L.S.M. & Vieira, D.A.G. & Saldanha, R.R., 2017. "Optimal analytic dispatch for tidal energy generation," Renewable Energy, Elsevier, vol. 108(C), pages 371-379.
    6. Angeloudis, Athanasios & Ahmadian, Reza & Falconer, Roger A. & Bockelmann-Evans, Bettina, 2016. "Numerical model simulations for optimisation of tidal lagoon schemes," Applied Energy, Elsevier, vol. 165(C), pages 522-536.
    7. Hu, Huakun & Xue, Wendong & Jiang, Peng & Li, Yong, 2022. "Bibliometric analysis for ocean renewable energy: An comprehensive review for hotspots, frontiers, and emerging trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Lewis, M.J. & Angeloudis, A. & Robins, P.E. & Evans, P.S. & Neill, S.P., 2017. "Influence of storm surge on tidal range energy," Energy, Elsevier, vol. 122(C), pages 25-36.
    9. Lee, Dal Soo & Oh, Sang-Ho & Yi, Jin-Hak & Park, Woo-Sun & Cho, Hyu-Sang & Kim, Duk-Gu & Eom, Hyun-Min & Ahn, Suk-Jin, 2010. "Experimental investigation on the relationship between sluice caisson shape of tidal power plant and the water discharge capability," Renewable Energy, Elsevier, vol. 35(10), pages 2243-2256.
    10. O Rourke, Fergal & Boyle, Fergal & Reynolds, Anthony, 2010. "Tidal energy update 2009," Applied Energy, Elsevier, vol. 87(2), pages 398-409, February.
    11. Aguiar, Alessandro L. & Marta-Almeida, Martinho & Cirano, Mauro & Pereira, Janini & da Cunha, Letícia Cotrim, 2024. "Numerical assessment of tidal potential energy in the Brazilian Equatorial Shelf," Renewable Energy, Elsevier, vol. 220(C).
    12. Li, Ying & Pan, Dong-Zi, 2017. "The ebb and flow of tidal barrage development in Zhejiang Province, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 380-389.
    13. Kim, J.W. & Ha, H.K. & Woo, S.-B. & Kim, M.-S. & Kwon, H.-K., 2021. "Unbalanced sediment transport by tidal power generation in Lake Sihwa," Renewable Energy, Elsevier, vol. 172(C), pages 1133-1144.
    14. Fairley, I. & Ahmadian, R. & Falconer, R.A. & Willis, M.R. & Masters, I., 2014. "The effects of a Severn Barrage on wave conditions in the Bristol Channel," Renewable Energy, Elsevier, vol. 68(C), pages 428-442.
    15. Faridnia, N. & Habibi, D. & Lachowicz, S. & Kavousifard, A., 2019. "Optimal scheduling in a microgrid with a tidal generation," Energy, Elsevier, vol. 171(C), pages 435-443.
    16. Lam, Wei-Haur & Bhatia, Aalisha, 2013. "Folding tidal turbine as an innovative concept toward the new era of turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 463-473.
    17. Luo, Yongyao & Wang, Zhengwei & Liu, Xin & Xiao, Yexiang & Chen, Changkun & Wang, Haoping & Yan, Jianhua, 2015. "Numerical prediction of pressure pulsation for a low head bidirectional tidal bulb turbine," Energy, Elsevier, vol. 89(C), pages 730-738.
    18. Kim, J.W. & Woo, S.-B., 2023. "A numerical approach to the treatment of submerged water exchange processes through the sluice gates of a tidal power plant," Renewable Energy, Elsevier, vol. 219(P1).
    19. Yunna Wu & Chuanbo Xu & Hu Xu, 2016. "Optimal Site Selection of Tidal Power Plants Using a Novel Method: A Case in China," Energies, MDPI, vol. 9(10), pages 1-26, October.
    20. Kwak, So-Yoon & Yoo, Seung-Hoon, 2015. "The public’s value for developing ocean energy technology in the Republic of Korea: A contingent valuation study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 432-439.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:92:y:2016:i:c:p:462-473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.