IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v90y2016icp55-61.html
   My bibliography  Save this article

Efficient solvent-less separation of lipids from municipal wet sewage scum and their sustainable conversion into biodiesel

Author

Listed:
  • di Bitonto, Luigi
  • Lopez, Antonio
  • Mascolo, Giuseppe
  • Mininni, Giuseppe
  • Pastore, Carlo

Abstract

A very efficient separation of lipids from wet sewage scum was optimised and positively tested on samples taken from several wastewater treatment plants (WWTPs). By simply heating sewage scum at 353 K and centrifuging the heated mass at 4000 rpm per 1 min, a recoverability of 93–99% of total oils was always obtained. This procedure resulted to be effective on samples with very different starting water contents. In all cases, extracted lipids have a very similar composition in terms of free fatty acids (FFAs), calcium soaps (32–40%wt) and glycerides (mono-, di- and tri-glycerides were practically absents), as well as fatty acid profiles. Once separated, lipids were converted into biodiesel through a direct esterification process carried out by adopting three sequential batch reactors, in which methanol and catalysts were charged in counter current. In this way, the complete conversion (>99%) of starting FFAs into FAMEs was perfectly matched with using the minimum amount of reactants under very mild conditions (345 K, 2 h). The overall convenience of the process was completed by the anaerobic digestion of fibrous residues obtained from centrifugation of starting sewage scum: the final biogas resulted largely enough to sustain the heat of process.

Suggested Citation

  • di Bitonto, Luigi & Lopez, Antonio & Mascolo, Giuseppe & Mininni, Giuseppe & Pastore, Carlo, 2016. "Efficient solvent-less separation of lipids from municipal wet sewage scum and their sustainable conversion into biodiesel," Renewable Energy, Elsevier, vol. 90(C), pages 55-61.
  • Handle: RePEc:eee:renene:v:90:y:2016:i:c:p:55-61
    DOI: 10.1016/j.renene.2015.12.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811530553X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.12.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ajanovic, Amela, 2013. "Renewable fuels – A comparative assessment from economic, energetic and ecological point-of-view up to 2050 in EU-countries," Renewable Energy, Elsevier, vol. 60(C), pages 733-738.
    2. Montefrio, Marvin Joseph & Xinwen, Tai & Obbard, Jeffrey Philip, 2010. "Recovery and pre-treatment of fats, oil and grease from grease interceptors for biodiesel production," Applied Energy, Elsevier, vol. 87(10), pages 3155-3161, October.
    3. Avhad, M.R. & Marchetti, J.M., 2015. "A review on recent advancement in catalytic materials for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 696-718.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. di Bitonto, Luigi & Reynel-Ávila, Hilda Elizabeth & Mendoza-Castillo, Didilia Ileana & Bonilla-Petriciolet, Adrián & Durán-Valle, Carlos J. & Pastore, Carlo, 2020. "Synthesis and characterization of nanostructured calcium oxides supported onto biochar and their application as catalysts for biodiesel production," Renewable Energy, Elsevier, vol. 160(C), pages 52-66.
    2. di Bitonto, Luigi & Locaputo, Vito & D'Ambrosio, Valeria & Pastore, Carlo, 2020. "Direct Lewis-Brønsted acid ethanolysis of sewage sludge for production of liquid fuels," Applied Energy, Elsevier, vol. 259(C).
    3. di Bitonto, Luigi & Pastore, Carlo, 2019. "Metal hydrated-salts as efficient and reusable catalysts for pre-treating waste cooking oils and animal fats for an effective production of biodiesel," Renewable Energy, Elsevier, vol. 143(C), pages 1193-1200.
    4. Carlo Pastore & Valeria D’Ambrosio, 2021. "Intensification of Processes for the Production of Ethyl Levulinate Using AlCl 3 ·6H 2 O," Energies, MDPI, vol. 14(5), pages 1-11, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
    2. Kyriakopoulos, Grigorios L. & Arabatzis, Garyfallos & Tsialis, Panagiotis & Ioannou, Konstantinos, 2018. "Electricity consumption and RES plants in Greece: Typologies of regional units," Renewable Energy, Elsevier, vol. 127(C), pages 134-144.
    3. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    4. Santagata, R. & Ripa, M. & Ulgiati, S., 2017. "An environmental assessment of electricity production from slaughterhouse residues. Linking urban, industrial and waste management systems," Applied Energy, Elsevier, vol. 186(P2), pages 175-188.
    5. Subramaniam, D. & Murugesan, A. & Avinash, A. & Kumaravel, A., 2013. "Bio-diesel production and its engine characteristics—An expatiate view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 361-370.
    6. Ajanovic, Amela & Haas, Reinhard, 2018. "Economic prospects and policy framework for hydrogen as fuel in the transport sector," Energy Policy, Elsevier, vol. 123(C), pages 280-288.
    7. Jake A. K. Elliott & Andrew S. Ball, 2021. "Selection of Industrial Trade Waste Resource Recovery Technologies—A Systematic Review," Resources, MDPI, vol. 10(4), pages 1-22, March.
    8. Munir, Mamoona & Ahmad, Mushtaq & Saeed, Muhammad & Waseem, Amir & Rehan, Mohammad & Nizami, Abdul-Sattar & Zafar, Muhammad & Arshad, Muhammad & Sultana, Shazia, 2019. "Sustainable production of bioenergy from novel non-edible seed oil (Prunus cerasoides) using bimetallic impregnated montmorillonite clay catalyst," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 321-332.
    9. Lin, Lin & Cunshan, Zhou & Vittayapadung, Saritporn & Xiangqian, Shen & Mingdong, Dong, 2011. "Opportunities and challenges for biodiesel fuel," Applied Energy, Elsevier, vol. 88(4), pages 1020-1031, April.
    10. Liu, Kang & Wang, Rui & Yu, Meiqing, 2018. "An efficient, recoverable solid base catalyst of magnetic bamboo charcoal: Preparation, characterization, and performance in biodiesel production," Renewable Energy, Elsevier, vol. 127(C), pages 531-538.
    11. de Aguiar, Viviane Marques & de Souza, Andrea Luzia F. & Galdino, Fernanda S. & da Silva, Michelle Martha C. & Teixeira, Viviane Gomes & Lachter, Elizabeth R., 2017. "Sulfonated poly(divinylbenzene) and poly(styrene-divinylbenzene) as catalysts for esterification of fatty acids," Renewable Energy, Elsevier, vol. 114(PB), pages 725-732.
    12. Patel, Madhumita & Kumar, Amit, 2016. "Production of renewable diesel through the hydroprocessing of lignocellulosic biomass-derived bio-oil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1293-1307.
    13. Wang, Yi-Tong & Yang, Xing-Xia & Xu, Jie & Wang, Hong-Li & Wang, Zi-Bing & Zhang, Lei & Wang, Shao-Long & Liang, Jing-Long, 2019. "Biodiesel production from esterification of oleic acid by a sulfonated magnetic solid acid catalyst," Renewable Energy, Elsevier, vol. 139(C), pages 688-695.
    14. da Conceição, Leyvison Rafael V. & Carneiro, Livia M. & Giordani, Domingos S. & de Castro, Heizir F., 2017. "Synthesis of biodiesel from macaw palm oil using mesoporous solid catalyst comprising 12-molybdophosphoric acid and niobia," Renewable Energy, Elsevier, vol. 113(C), pages 119-128.
    15. Atadashi, I.M. & Aroua, M.K. & Aziz, A.R. Abdul & Sulaiman, N.M.N., 2011. "Refining technologies for the purification of crude biodiesel," Applied Energy, Elsevier, vol. 88(12), pages 4239-4251.
    16. Marta Ramos & Ana Paula Soares Dias & Jaime Filipe Puna & João Gomes & João Carlos Bordado, 2019. "Biodiesel Production Processes and Sustainable Raw Materials," Energies, MDPI, vol. 12(23), pages 1-30, November.
    17. Rozina, & Ahmad, Mushtaq & Zafar, Muhammad & Ali, Nasir & Lu, Houfang, 2017. "Biodiesel synthesis from Saussurea heteromalla (D.Don) Hand-Mazz integrating ethanol production using biorefinery approach," Energy, Elsevier, vol. 141(C), pages 1810-1818.
    18. Albert Hiesl & Amela Ajanovic & Reinhard Haas, 2020. "On current and future economics of electricity storage," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(6), pages 1176-1192, December.
    19. Wu, Kun & Xu, Weijia & Lu, Jian & Wang, Chun & Liao, Jinhui & He, Xia, 2022. "Saponification with calcium enhanced methane yield in anaerobic digestion of fat, oil, and grease: The essential role of calcium," Renewable Energy, Elsevier, vol. 195(C), pages 1103-1112.
    20. Zhang, Heng & Li, Hu & Hu, Yulin & Venkateswara Rao, Kasanneni Tirumala & Xu, Chunbao (Charles) & Yang, Song, 2019. "Advances in production of bio-based ester fuels with heterogeneous bifunctional catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:90:y:2016:i:c:p:55-61. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.