IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v89y2016icp71-79.html
   My bibliography  Save this article

Anode optimization based on gradient porous control medium for passive liquid-feed direct methanol fuel cells

Author

Listed:
  • Yuan, Wei
  • Yan, Zhiguo
  • Tan, Zhenhao
  • Wang, Aoyu
  • Li, Zongtao
  • Tang, Yong

Abstract

The direct methanol fuel cell (DMFC) is a potential candidate to be used as a portable power source which still faces great challenges in structure optimization because of complex interactions and even conflicts between the reactant and product managements. This work presents an effective method for the anode optimization by using a gradient porous medium to realize more active control of the anode mass transfer mechanisms of a passive liquid-feed DMFC. This functional medium is made of a self-developed metal fiber sintered felt based on multi-tooth cutting and high-temperature sintering. Its structural features and processing parameters can be adaptively controlled according to the application requirement. Results indicate that the porosity, assembly pattern and thickness of this gradient porous medium have great effects on the cell performance. The DMFC is insensitive to the change of sintering process. The use of a gradient porosity promotes a higher cell performance than the uniform structure, especially when a lower porosity is used inward. How the methanol concentration affects the cell performance is also discussed in this study.

Suggested Citation

  • Yuan, Wei & Yan, Zhiguo & Tan, Zhenhao & Wang, Aoyu & Li, Zongtao & Tang, Yong, 2016. "Anode optimization based on gradient porous control medium for passive liquid-feed direct methanol fuel cells," Renewable Energy, Elsevier, vol. 89(C), pages 71-79.
  • Handle: RePEc:eee:renene:v:89:y:2016:i:c:p:71-79
    DOI: 10.1016/j.renene.2015.11.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115304900
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.11.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuan, Wei & Tang, Yong & Yang, Xiaojun & Wan, Zhenping, 2012. "Porous metal materials for polymer electrolyte membrane fuel cells – A review," Applied Energy, Elsevier, vol. 94(C), pages 309-329.
    2. Yuan, Wei & Zhang, Zhaochun & Hu, Jinyi & Zhou, Bo & Tang, Yong, 2014. "Passive vapor-feed direct methanol fuel cell using sintered porous metals to realize high-concentration operation," Applied Energy, Elsevier, vol. 136(C), pages 143-149.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rahmani, Ebrahim & Moradi, Tofigh & Ghandehariun, Samane & Naterer, Greg F. & Ranjbar, Amirhossein, 2023. "Enhanced mass transfer and water discharge in a proton exchange membrane fuel cell with a raccoon channel flow field," Energy, Elsevier, vol. 264(C).
    2. Abdelkareem, Mohammad Ali & Allagui, Anis & Sayed, Enas Taha & El Haj Assad, M. & Said, Zafar & Elsaid, Khaled, 2019. "Comparative analysis of liquid versus vapor-feed passive direct methanol fuel cells," Renewable Energy, Elsevier, vol. 131(C), pages 563-584.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calabriso, Andrea & Borello, Domenico & Romano, Giovanni Paolo & Cedola, Luca & Del Zotto, Luca & Santori, Simone Giovanni, 2017. "Bubbly flow mapping in the anode channel of a direct methanol fuel cell via PIV investigation," Applied Energy, Elsevier, vol. 185(P2), pages 1245-1255.
    2. Yuan, Wei & Wang, Aoyu & Yan, Zhiguo & Tan, Zhenhao & Tang, Yong & Xia, Hongrong, 2016. "Visualization of two-phase flow and temperature characteristics of an active liquid-feed direct methanol fuel cell with diverse flow fields," Applied Energy, Elsevier, vol. 179(C), pages 85-98.
    3. Liu, Guicheng & Li, Xinyang & Wang, Hui & Liu, Xiuying & Chen, Ming & Woo, Jae Young & Kim, Ji Young & Wang, Xindong & Lee, Joong Kee, 2017. "Design of 3-electrode system for in situ monitoring direct methanol fuel cells during long-time running test at high temperature," Applied Energy, Elsevier, vol. 197(C), pages 163-168.
    4. Bao, Zhiming & Niu, Zhiqiang & Jiao, Kui, 2020. "Gas distribution and droplet removal of metal foam flow field for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 280(C).
    5. Jiao, Kui & Bachman, John & Zhou, Yibo & Park, Jae Wan, 2014. "Effect of induced cross flow on flow pattern and performance of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 115(C), pages 75-82.
    6. Jung, Guo-Bin & Tzeng, Wei-Jen & Jao, Ting-Chu & Liu, Yu-Hsu & Yeh, Chia-Chen, 2013. "Investigation of porous carbon and carbon nanotube layer for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 101(C), pages 457-464.
    7. Awin, Yussef & Dukhan, Nihad, 2019. "Experimental performance assessment of metal-foam flow fields for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    8. Huo, Sen & Cooper, Nathanial James & Smith, Travis Lee & Park, Jae Wan & Jiao, Kui, 2017. "Experimental investigation on PEM fuel cell cold start behavior containing porous metal foam as cathode flow distributor," Applied Energy, Elsevier, vol. 203(C), pages 101-114.
    9. Wu, Horng-Wen, 2016. "A review of recent development: Transport and performance modeling of PEM fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 81-106.
    10. Yu, Zhi-Qiang & Feng, Yong-Liang & Zhou, Wen-Jing & Jin, Yu & Li, Ming-Jie & Li, Zeng-Yao & Tao, Wen-Quan, 2013. "Study on flow and heat transfer characteristics of composite porous material and its performance analysis by FSP and EDEP," Applied Energy, Elsevier, vol. 112(C), pages 1367-1375.
    11. Wang, Zhigang & Zhang, Xuelin & Nie, Li & Zhang, Yufeng & Liu, Xiaowei, 2014. "Elimination of water flooding of cathode current collector of micro passive direct methanol fuel cell by superhydrophilic surface treatment," Applied Energy, Elsevier, vol. 126(C), pages 107-112.
    12. Vasile, Nicolò S. & Doherty, Ronan & Monteverde Videla, Alessandro H.A. & Specchia, Stefania, 2016. "3D multi-physics modeling of a gas diffusion electrode for oxygen reduction reaction for electrochemical energy conversion in PEM fuel cells," Applied Energy, Elsevier, vol. 175(C), pages 435-450.
    13. Perng, Shiang-Wuu & Horng, Rong-Fang & Ku, Hui-Wen, 2013. "Effects of reaction chamber geometry on the performance and heat/mass transport phenomenon for a cylindrical methanol steam reformer," Applied Energy, Elsevier, vol. 103(C), pages 317-327.
    14. Zhang, Yufeng & Xue, Rui & Zhang, Xuelin & Song, Jiaying & Liu, Xiaowei, 2015. "rGO deposited in stainless steel fiber felt as mass transfer barrier layer for μ-DMFC," Energy, Elsevier, vol. 91(C), pages 1081-1086.
    15. Kang, Dong Gyun & Lee, Dong Keun & Choi, Jong Min & Shin, Dong Kyu & Kim, Min Soo, 2020. "Study on the metal foam flow field with porosity gradient in the polymer electrolyte membrane fuel cell," Renewable Energy, Elsevier, vol. 156(C), pages 931-941.
    16. Ikechukwu S. Anyanwu & Yuze Hou & Wenmiao Chen & Fengwen Pan & Qing Du & Jin Xuan & Kui Jiao, 2019. "Numerical Investigation of Liquid Water Transport Dynamics in Novel Hybrid Sinusoidal Flow Channel Designs for PEMFC," Energies, MDPI, vol. 12(21), pages 1-20, October.
    17. Afshari, E. & Mosharaf-Dehkordi, M. & Rajabian, H., 2017. "An investigation of the PEM fuel cells performance with partially restricted cathode flow channels and metal foam as a flow distributor," Energy, Elsevier, vol. 118(C), pages 705-715.
    18. Yang, Yang & Yuan, Wei & Zhang, Xiaoqing & Ke, Yuzhi & Qiu, Zhiqiang & Luo, Jian & Tang, Yong & Wang, Chun & Yuan, Yuhang & Huang, Yao, 2020. "A review on structuralized current collectors for high-performance lithium-ion battery anodes," Applied Energy, Elsevier, vol. 276(C).
    19. Cheng Wang & Shubo Wang & Linfa Peng & Junliang Zhang & Zhigang Shao & Jun Huang & Chunwen Sun & Minggao Ouyang & Xiangming He, 2016. "Recent Progress on the Key Materials and Components for Proton Exchange Membrane Fuel Cells in Vehicle Applications," Energies, MDPI, vol. 9(8), pages 1-39, July.
    20. Deng, Huichao & Zhang, Xuelin & Ma, Zezhong & Chen, Hailong & Sun, Qiu & Zhang, Yufeng & Liu, Xiaowei, 2014. "A micro passive direct methanol fuel cell with high performance via plasma electrolytic oxidation on aluminum-based substrate," Energy, Elsevier, vol. 78(C), pages 149-153.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:89:y:2016:i:c:p:71-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.